×

Families of special Weierstrass points. (English) Zbl 1180.14036

Summary: The purpose of this note is to show that loci of (special) Weierstrass points on the fibers of a family \(\pi : \mathfrak X \to S\) of smooth curves of genus \(g\geqslant 2\) can be studied by simply pulling back the Schubert calculus naturally living on a suitable Grassmann bundle over \(\mathfrak X\). Using such an idea we prove new results regarding the decomposition in \(A_ * \mathfrak X \) of the class of the locus of Weierstrass points having weight at least 3 as the sum of classes of Weierstrass points having “bounded from below” gaps sequences.

MSC:

14H55 Riemann surfaces; Weierstrass points; gap sequences

References:

[1] Fulton, W., Intersection Theory (1984), Springer-Verlag · Zbl 0541.14005
[2] Gatto, L., (Notes on) Intersection Theory on Moduli Space of Curves (2000), Monografas de Matemática: Monografas de Matemática Instituto Nacional de Matemática Pura e Aplicada, Rio de Janeiro · Zbl 0994.14016
[3] Gatto, L., Schubert calculus via Hasse-Schmidt derivations, Asian J. Math., 9, 3, 315-322 (2005) · Zbl 1099.14045
[4] L. Gatto, Schubert calculus: An algebraic introduction, 25° Colóquio Brasileiro de Matemática, Instituto Nacional de Matemática Pura e Aplicada, Rio de Janeiro, 2005; L. Gatto, Schubert calculus: An algebraic introduction, 25° Colóquio Brasileiro de Matemática, Instituto Nacional de Matemática Pura e Aplicada, Rio de Janeiro, 2005 · Zbl 1082.14054
[5] L. Gatto, A. Nigro, A remark on Porteous’ formula (2009), in preparation; L. Gatto, A. Nigro, A remark on Porteous’ formula (2009), in preparation
[6] L. Gatto, P. Salehyan, Weierstrass points of the universal curve (2009), in preparation; L. Gatto, P. Salehyan, Weierstrass points of the universal curve (2009), in preparation · Zbl 1180.14036
[7] Gatto, L.; Santiago, T., Schubert calculus on Grassmann algebra, Canad. Math. Bull., 52, 2, 200-212 (2009) · Zbl 1168.14039
[8] Gatto, L.; Ponza, F., Derivatives of Wronskians with applications to families of special Weierstrass points, Trans. Amer. Math. Soc., 351, 6, 2233-2255 (1999) · Zbl 0917.14016
[9] Laksov, D.; Thorup, A., A determinantal formula for the exterior powers of the polynomial ring, Indiana Univ. Math. J., 56, 2, 825-845 (2007) · Zbl 1121.14045
[10] Laksov, D.; Thorup, A., Schubert calculus on Grassmannians and exterior products, Indiana Univ. Math. J., 58, 1, 283-300 (2009) · Zbl 1198.14052
[11] Lax, R. F., Weierstrass points of the universal curve, Math. Ann., 216, 35-42 (1975) · Zbl 0291.32028
[12] Lax, R. F., Gap sequences and moduli in genus 4, Math. Z., 175, 67-75 (1980) · Zbl 0425.32010
[13] Mumford, D., Towards an enumerative geometry of moduli space of curves, (Arithmetic and Geometry, vol. II. Arithmetic and Geometry, vol. II, Progr. Math., vol. 36 (1983), Birkhäuser Boston: Birkhäuser Boston Boston, MA), 271-328 · Zbl 0554.14008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.