×

Improved scatter search for the global optimization of computationally expensive dynamic models. (English) Zbl 1179.90307

Summary: A new algorithm for global optimization of costly nonlinear continuous problems is presented in this paper. The algorithm is based on the scatter search metaheuristic, which has recently proved to be efficient for solving combinatorial and nonlinear optimization problems. A kriging-based prediction method has been coupled to the main optimization routine in order to discard the evaluation of solutions that are not likely to provide high quality function values. This makes the algorithm suitable for the optimization of computationally costly problems, as is illustrated in its application to two benchmark problems and its comparison with other algorithms.

MSC:

90C30 Nonlinear programming

References:

[1] Banga J.R., Moles C.G. and Alonso A.A. (2003). Global optimization of bioprocesses using stochastic and hybrid methods. In: Floudas, C.A. and Pardalos, P.M. (eds) Frontiers in Global Optimization, Nonconvex Optimization and Its Applications, vol. 74, pp 45–70. Kluwer, Hingham MA, USA · Zbl 1165.90703
[2] Biegler L.T. and Grossmann I.E. (2004). Retrospective on optimization. Comput. Chem. Eng. 28(8): 1169–1192
[3] (2001). The COST Simulation Benchmark–Description and Simulator Manual. COST (European Cooperation in the field of Scientific and Technical Research), Brussels
[4] Cox D.D. and John S. (1997). SDO: a statistical method for global optimization. In: Alexandrov, N. and Hussaini, M.Y. (eds) Multidisciplinary Design Optimization: State of the Art, pp 315–329. SIAM, Philadelphia
[5] Egea J.A., Rodríguez-Fernández M., Banga J.R. and Martí R. (2007). Scatter search for chemical and bio-process optimization. J. Global Optim. 37(3): 481–503 · Zbl 1108.92001 · doi:10.1007/s10898-006-9075-3
[6] Floudas C.A., Akrotirianakis I.G., Caratzoulas S., Meyer C.A. and Kallrath J. (2005). Global optimization in the 21st century: advances and challenges. Comput. Chem. Eng. 29(6): 1185–1202 · doi:10.1016/j.compchemeng.2005.02.006
[7] Glover F. (1977). Heuristics for integer programming using surrogate constraints. Decisi. Sci. 8: 156–166 · doi:10.1111/j.1540-5915.1977.tb01074.x
[8] Gutmann H.M. (2001). A radial basis function method for global optimization. J. Global Optim. 19(3): 201–227 · Zbl 0972.90055 · doi:10.1023/A:1011255519438
[9] Holmström K. and Edvall M.M. (2004). The tomlab optimization environment. In: Kallrath, J. and Basf, A.B. (eds) Modeling Languages in Mathematical Optimization, pp 369–378. Kluwer, Dordrecht
[10] Jones D.R., Schonlau M. and Welch W.J. (1998). Efficient global optimization of expensive black-box functions. J. Global Optim. 13: 455–492 · Zbl 0917.90270 · doi:10.1023/A:1008306431147
[11] Jones D.R. (2001a). A taxonomy of global optimization methods based on response surfaces. J. Global Optim. 21(4): 345–383 · Zbl 1172.90492 · doi:10.1023/A:1012771025575
[12] Jones D.R. (2001b). DIRECT global optimization algorithm. In: Floudas, C.A. and Pardalos, P.M. (eds) Encyclopedia of Optimization, pp 431–440. Kluwer, Dordrecht
[13] Laguna M. and Martí R. (2003). Scatter Search: Methodology and Implementations in C. Kluwer, Boston · Zbl 1055.68103
[14] Matheron G. (1963). Principles of geostatistics. Econ. Geol. 58: 1246–1266 · doi:10.2113/gsecongeo.58.8.1246
[15] Sasena M.J., Papalambros P. and Goovaerts P. (2002). Exploration of metamodeling sampling criteria for constrained global optimization. Eng. Optim. 34: 263–278 · doi:10.1080/03052150211751
[16] Stein M.L. (1999). Interpolation of Spatial Data: some Theory for Kriging. Springer, New York · Zbl 0924.62100
[17] Storn R. and Price K. (1997). Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11: 341–359 · Zbl 0888.90135 · doi:10.1023/A:1008202821328
[18] Vazquez, E.: Modélisation comportementale de systèmes non-linéaires multivariables par méthodes à noyaux et applications. Ph.D. thesis, Paris XI Orsay University (2005)
[19] Vecchia A.V. (1998). Estimation and model identification for continuous spatial processes. J. R. Stat. Soc. B(50): 297–312
[20] Yaglom A.M. (1986). Correlation Theory of Stationary and Related Random Functions I: Basic results. Springer Series in Statistics. Springer, New York
[21] The MathWorks Inc.: Optimization Toolbox for Use with Matlab®. User’s guide. Version 2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.