×

A new sequential data assimilation method. (English) Zbl 1178.93139

Summary: A new sequential data assimilation method named “Monte Carlo \(H_{\infty }\) filter” is introduced based on \(H_{\infty }\) filter technique and Monte Carlo method in this paper. This method applies to nonlinear systems in condition of lacking the statistical properties of observational errors. In order to compare the assimilation capability of Monte Carlo \(H_{\infty }\) filter with that of the ensemble Kalman filter (EnKF) in solving practical problems caused by temporal correlation or spatial correlation of observational errors, two numerical experiments are performed by using Lorenz (1963) system and shallow-water equations respectively. The result is that the assimilation capability of the new method is better than that of EnKF method. It is also shown that Monte Carlo \(H_{\infty }\) filter assimilation method is effective and suitable to nonlinear systems in that it does not depend on the statistical properties of observational errors and has better robustness than EnKF method when the statistical properties of observational errors are varying. In addition, for the new method, the smallest level factor founded by search method is flow-dependent.

MSC:

93E11 Filtering in stochastic control theory
62H20 Measures of association (correlation, canonical correlation, etc.)
93C10 Nonlinear systems in control theory

Software:

EnKF
Full Text: DOI

References:

[1] Chou J F. A problem of using past data in numerical weather forecasting. Sci China (in Chinese), 1974, 6: 635–644
[2] Luo Z D, Zhu J, Wu Y J. A decouple conjugate gradient-Gauss-Newton iterative scheme for altimetry assimilation data problems. Sci China Ser E-Tech Sci, 2003, 46(4): 361–372 · Zbl 1275.90127 · doi:10.1360/03ye0014
[3] Evensen G. Sequential data assimilation with a nonlinear quasigeostrophic model using Monte Carlo methods to forecast error statistics. J Geophys Res, 1994, 99(C5): 10143–10162 · doi:10.1029/94JC00572
[4] Qin J, Yan G J, Liu S M, et al. Application of ensemble Kalman filter to geophysical parameters retrieval in remote sensing: A case study of kernel-driven BRDF model inversion. Sci China Ser D-Earth Sci, 2006, 49(6): 632–640 · doi:10.1007/s11430-006-0632-x
[5] Snyder C, Zhang F. Assimilation of simulated Doppler radar observations with an ensemble Kalman filter. Mon Weather Rev, 2003, 131(8): 1663–1677 · doi:10.1175//2555.1
[6] Houtekamer P L, Mitchell H L, Pellerin G, et al. Atmospheric data assimilation with an ensemble Kalman filter: results with real observations. Mon Weather Rev, 2005, 133(3): 604–620 · doi:10.1175/MWR-2864.1
[7] Chai L, Yuan J P, Luo J J, et al. New developments in nonlinear systems estimation. J Astron (in Chinese), 2005, 26(3): 380–384
[8] Gao H J, Wang C H. New approach to robust l 2-l and H filter design for uncertain discrete-time systems. Sci China Ser E-Tech Sci, 2003, 33(8): 695–706
[9] Zhu J. Four-dimensional data quality control: variation method. Acta Meteorol Sin (in Chinese), 1995, 53(4): 480–487
[10] Sage A P, Husa G W. Adaptive filtering with unknown prior statistics. In: Proceedings of Joint Automatic Control Conference, Boulder, 1969. 760–769
[11] Zames G. Feedback and optimal sensitivity: Model reference transformations, multiplicative seminorms, and approximate inverses. IEEE Trans Autom Contr, 1981, 26(2): 301–320 · Zbl 0474.93025 · doi:10.1109/TAC.1981.1102603
[12] Shake U. H minimum error state estimation of linear stationary processes. IEEE Trans Autom Contr, 1990, 35(5): 554–558 · Zbl 0706.93063 · doi:10.1109/9.53521
[13] Sayed H. A framework for state-space estimation with uncertain models. IEEE Trans Autom Contr, 2001, 46(7): 998–1013 · Zbl 1009.93075 · doi:10.1109/9.935054
[14] Khargonekar P P, Nagpal K M. Filtering and smoothing in an H setting. IEEE Trans Autom Contr, 1991, 36(2): 152–166 · Zbl 0758.93074 · doi:10.1109/9.67291
[15] Shaked U, Theodor Y. H optimal estimation: A tutorial. In: Proceedings of the 31st IEEE Conference on Decision and Control, Tuscon, 1992. 2278–2286
[16] Kaminski P G, Bryson A E, Schmidt S F. Discrete square-root filtering: A survey of currents techniques, IEEE Trans Autom Contr, 1971, 16(6): 727–735 · doi:10.1109/TAC.1971.1099816
[17] Hassibi B, Kailath T, Sayed A H. Array algorithms for H estimation. IEEE Trans Autom Contr, 2000, 45(4): 702–706 · Zbl 0980.93077 · doi:10.1109/9.847105
[18] Bojanczyk A, Qiao S, Steinhardt A O. Unifying unitary and hyperbolic transformations. Linear Algebra Appl, 2000, 316: 183–197 · Zbl 0970.65042 · doi:10.1016/S0024-3795(00)00108-7
[19] Hassibi B, Sayed A H, Kailath T. Linear estimation in Krein spaces–Part II: Applications. IEEE Trans Autom Contr, 1996, 41(1): 34–39 · Zbl 0862.93056 · doi:10.1109/9.481606
[20] Leith C E. Theoretical skill of Monte Carlo forecasts. Mon Weather Rev, 1974, 102(6): 409–418 · doi:10.1175/1520-0493(1974)102<0409:TSOMCF>2.0.CO;2
[21] Xu C W. Introduction to Calculation Method (in Chinese). Beijing: China Higher Education Press, 1985
[22] Evensen G. Sampling strategies and square root analysis schemes for the EnKF. Ocean Dyn, 2004, 54(6): 539–560 · doi:10.1007/s10236-004-0099-2
[23] Carlson N A. Federated filter for fault-tolerant integrated navigation systems. In: Proceedings of The IEEE 1988 Position, Location and Navigation Symposium, Orlando, 1988. 110–119
[24] Kalman R E. A new approach to linear filtering and prediction problems. Trans ASME Ser D J Basic Eng, 1960, 82(1): 35–45
[25] Lorenz E N. Deterministic nonperiodic flow. J Atmos Sci, 1963, 20(2): 130–141 · Zbl 1417.37129 · doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
[26] Gelb A. Applied Optimal Estimation. New York: MIT Press, 1974
[27] Liu C S. The design and research of data assimilation schemes for ensemble Kalman filter. Dissertation of Masteral Degree (in Chinese). Beijing: Chinese Academy of Meteorological Sciences, 2005
[28] Evensen G. The ensemble Kalman filter: theoretical formulation and practical implementation. Ocean Dyn, 2003, 53(4): 343–367 · doi:10.1007/s10236-003-0036-9
[29] Hamill T M. Ensemble-based data assimilation. Workshop on Predictability ECMWF, 2002. 83–105
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.