×

Erosion of a granular bed driven by laminar fluid flow. (English) Zbl 1178.76038

Summary: Motivated by examples of erosive incision of channels in sand, we investigate the motion of individual grains in a granular bed driven by a laminar fluid to give us new insights into the relationship between hydrodynamic stress and surface granular flow. A closed cell of rectangular cross-section is partially filled with glass beads and a constant fluid flux \(Q\) flows through the cell. The refractive indices of the fluid and the glass beads are matched and the cell is illuminated with a laser sheet, allowing us to image individual beads. The bed erodes to a rest height \(h_{r}\) which depends on \(Q\). The Shields threshold criterion assumes that the non-dimensional ratio \(\theta \) of the viscous stress on the bed to the hydrostatic pressure difference across a grain is sufficient to predict the granular flux. Furthermore, the Shields criterion states that the granular flux is non-zero only for \(\theta > \theta _{c}\). We find that the Shields criterion describes the observed relationship \(h_{r}\propto Q^{1/2}\) when the bed height is offset by approximately half a grain diameter. Introducing this offset in the estimation of \(\theta \) yields a collapse of the measured Einstein number \(q^*\) to a power-law function of \(\theta - \theta _{c}\) with exponent \(1.75 \pm 0.25\). The dynamics of the bed height relaxation are described well by the power-law relationship between the granular flux and the bed stress.

MSC:

76-05 Experimental work for problems pertaining to fluid mechanics
76T25 Granular flows

References:

[1] Komar, Beach Processes and Sedimentation. (1998)
[2] Meyer-Peter, Proc. 2nd Meeting of the Int. Assoc. for Hydraulic Structures Res. pp 39– (1948)
[3] DOI: 10.1146/annurev.fluid.36.050802.122103 · Zbl 1125.76348 · doi:10.1146/annurev.fluid.36.050802.122103
[4] DOI: 10.1103/PhysRevLett.62.40 · doi:10.1103/PhysRevLett.62.40
[5] DOI: 10.1029/94WR00757 · doi:10.1029/94WR00757
[6] DOI: 10.1017/S0022112071002556 · doi:10.1017/S0022112071002556
[7] Graf, J. Hydraul. Res. 15 pp 151– (1977) · doi:10.1080/00221687709499653
[8] Graf, Hydraulics of Sediment Transport. (1971)
[9] DOI: 10.1063/1.1894796 · Zbl 1187.76185 · doi:10.1063/1.1894796
[10] Einstein, The bed-load function for sediment transportation in open channel flows. Tech. Bull. 1026 (1950)
[11] DOI: 10.1016/S1631-0705(02)01310-5 · doi:10.1016/S1631-0705(02)01310-5
[12] DOI: 10.1061/(ASCE)0733-9429(2002)128:12(1069) · doi:10.1061/(ASCE)0733-9429(2002)128:12(1069)
[13] Yalin, Mechanics of Sediment Transport (1977)
[14] DOI: 10.1061/(ASCE)0733-9429(2006)132:11(1159) · doi:10.1061/(ASCE)0733-9429(2006)132:11(1159)
[15] DOI: 10.1098/rspa.1928.0175 · JFM 54.0897.01 · doi:10.1098/rspa.1928.0175
[16] DOI: 10.1017/S0022112004001028 · Zbl 1060.76501 · doi:10.1017/S0022112004001028
[17] DOI: 10.1038/379505a0 · doi:10.1038/379505a0
[18] DOI: 10.1103/PhysRevLett.91.064301 · doi:10.1103/PhysRevLett.91.064301
[19] Buffington, Water Resour. Res. 33 pp 1993– (1997)
[20] DOI: 10.1103/PhysRevA.73.010301 · doi:10.1103/PhysRevA.73.010301
[21] DOI: 10.1007/BF02120313 · Zbl 0041.54204 · doi:10.1007/BF02120313
[22] DOI: 10.1029/1999WR900312 · doi:10.1029/1999WR900312
[23] DOI: 10.1103/PhysRevLett.89.034301 · doi:10.1103/PhysRevLett.89.034301
[24] DOI: 10.1046/j.1365-3091.2000.00008.x · doi:10.1046/j.1365-3091.2000.00008.x
[25] DOI: 10.1063/1.166437 · Zbl 1055.74515 · doi:10.1063/1.166437
[26] DOI: 10.1017/S0022112067001375 · doi:10.1017/S0022112067001375
[27] van Rijn, Handbook of sediment transport by currents and waves (1989)
[28] Bailard, J. Geophys. Res.?Oceans Atmos. 86 pp 938– (1981)
[29] Quartier, Phys. Rev. 62 pp 8299– (2000)
[30] DOI: 10.1061/(ASCE)0733-9429(1998)124:10(985) · doi:10.1061/(ASCE)0733-9429(1998)124:10(985)
[31] DOI: 10.1111/j.1365-3091.2005.00710.x · doi:10.1111/j.1365-3091.2005.00710.x
[32] DOI: 10.1016/S0378-3839(01)00015-1 · doi:10.1016/S0378-3839(01)00015-1
[33] DOI: 10.1061/(ASCE)0733-9399(2001)127:3(211) · doi:10.1061/(ASCE)0733-9399(2001)127:3(211)
[34] Neill, J. Hydraul. Div. ASCE 95 pp 585– (1969)
[35] DOI: 10.1038/371054a0 · doi:10.1038/371054a0
[36] DOI: 10.1111/j.1365-3091.1977.tb00136.x · doi:10.1111/j.1365-3091.1977.tb00136.x
[37] DOI: 10.1130/0016-7606(1985)962.0.CO;2 · doi:10.1130/0016-7606(1985)962.0.CO;2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.