×

One point quadrature shell elements: a study on convergence and patch tests. (English) Zbl 1178.74162

Summary: One point quadrature shell elements are widely used in the numerical simulation of shell structures, including sheet forming, essentially because of their computational efficiency. Nowadays, the purpose of using one point quadrature shell elements is not only related to computational efficiency but also because these elements have shown to be simultaneously robust and accurate in the simulation of complex sheet metal forming processes.
The main objective of this work is to study the convergence behavior of different one-point quadrature shell elements and their ability to pass the membrane and to perform bending patch tests. For comparison purposes, two new elements include a new formulation for the membrane strain field in order to further improve the membrane behavior of the element developed in previous work [the authors et al., Comput. Methods Appl. Mech. Eng. 191, No. 45, 5177–5206 (2002; Zbl 1083.74583)]. The original convective membrane strains in [loc. cit.] (in the stabilization matrices only) are thus replaced by new membrane strains, constructed directly at the co-rotational coordinate system (located at the element’s center). It is thus proved that, with this new membrane formulation, the elements pass now all the patch tests but, for warped (or curved) element geometries, their accuracy is not as good as of the original element in [loc. cit.] based on the convective coordinate system. The numerical results presented in this paper, are used for a comprehensive comparison and discussion of these formulations for well known linear benchmark examples.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74K25 Shells

Citations:

Zbl 1083.74583

Software:

ABAQUS
Full Text: DOI

References:

[1] ABAQUS (2002) Theory manual, Version 6.3. Hibbitt, Karlsson & Sorensen, Inc. Rhode-Island USA
[2] Andelfinger U, Ramm E (1993) EAS-Elements for two-dimensional, three-dimensional, plate and shells and their equivalence to HR-elements. Int J Numer Meth Eng 36: 1413–1449 · Zbl 0772.73071 · doi:10.1002/nme.1620360805
[3] Batoz JL, Dhatt G (1992) Modélisation des structures par Éléments Finis, Vol 3. Coques. Hermés, Paris
[4] Bazeley GP, Cheung YK, Irons BM, Zienkiewicz OC (1965) Triangular elements in bending-conforming and non-conforming solutions. In: Conference of matrix methods in structural mechanics, Air Force Inst. Tech., Wright-Patterson AF base
[5] Belytschko T, Bachrach WE (1986) Efficient implementation of quadrilaterals with high coarse-mesh accuracy. Comput Meth Appl Mech Eng 54:279 · Zbl 0579.73075 · doi:10.1016/0045-7825(86)90107-6
[6] Belytschko T, Lin JI, Tsay CS (1984) Explicit algorithms for the nonlinear dynamics of shells. Comput Meth Appl Mech Eng 42:225 · doi:10.1016/0045-7825(84)90026-4
[7] Belytschko T, Leviathan I (1994) Physical stabilization of the 4-node shell element with one point quadrature. Comput Meth Appl Mech Eng 113:321–350 · Zbl 0846.73058 · doi:10.1016/0045-7825(94)90052-3
[8] Belytschko T, Leviathan I (1994) Projection schemes for one-point quadrature shell elements. Comput Meth Appl Mech Eng 115:277 · Zbl 0846.73058 · doi:10.1016/0045-7825(94)90063-9
[9] Cardoso RPR, Yoon JW, Grácio JJA, Barlat F, César de Sá JMA (2002) Development of a one point quadrature shell element for nonlinear applications with contact and anisotropy. Comput Meth Appl Mech Eng 191:5177 · Zbl 1083.74583 · doi:10.1016/S0045-7825(02)00455-3
[10] Cardoso RPR, Yoon JW, Valente RAF (2006) A new approach to reduce membrane and transverse shear locking for one point quadrature shell elements: linear formulation. Int J Numer Meth Eng 66:214–249 · Zbl 1110.74844 · doi:10.1002/nme.1548
[11] Chen XM, Cen S, Long YQ, Yao ZH (2004) Membrane elements insensitive to distortion using the quadrilateral area coordinate method. Comput Struct 82:35–54 · doi:10.1016/j.compstruc.2003.08.004
[12] Dvorkin E, Bathe KJ (1984) A continuum mechanics based four-node shell element for general nonlinear analysis. Eng Comput 1:77 · doi:10.1108/eb023562
[13] Hughes TJR (1987) The finite element method: linear static and dynamic analysis. Prentice-Hall, Englewood Cliffs
[14] Ibrahimbegović A, Taylor RL, Wilson EL (1990) A robust quadrilateral membrane finite element with drilling degrees of freedom. Int J Numer Meth Eng 30:445–457 · Zbl 0729.73207 · doi:10.1002/nme.1620300305
[15] Kasper EP, Taylor RL (2000) A mixed-enhanced strain method. Part I: Geometrically linear problems. Comput Struct 75:237–250
[16] Kemp BL, Cho C, Lee SW (1998) A four-node solid shell element formulation with assumed strain. Int J Numer Meth Eng 43:909–924 · Zbl 0937.74065 · doi:10.1002/(SICI)1097-0207(19981115)43:5<909::AID-NME450>3.0.CO;2-X
[17] Knight NF (1997) The Raasch challenge for shell elements. AIAA J 35:375–381 · Zbl 0894.73155 · doi:10.2514/2.104
[18] MacNeal RH, Harder RL (1985) A proposed standard set of problems to test finite element accuracy. Finite Elem Anal Des 1:1–20 · doi:10.1016/0168-874X(85)90003-4
[19] MacNeal RH (1994) Finite elements: their design and performance. Marcel Dekker New York
[20] Parisch H (1991) An investigation of a finite rotation four node assumed strain shell element. Int J Numer Meth Eng 31:127–150 · Zbl 0825.73783 · doi:10.1002/nme.1620310108
[21] Simo JC, Fox DD, Rifai MS (1989) On a stress resultant geometrically exact shell model. Part I: Formulation and optimal parametrization. Comput Meth Appl Mech Eng 72: 267–304 · Zbl 0692.73062 · doi:10.1016/0045-7825(89)90002-9
[22] Simo JC, Fox DD, Rifai MS (1989) On a stress resultant geometrically exact shell model. Part II: The linear theory–computational aspects. Comput Meth Appl Mech Eng 73: 53–92 · Zbl 0724.73138 · doi:10.1016/0045-7825(89)90098-4
[23] Simo JC, Rifai MS (1990) A class of mixed assumed strain methods and the method of incompatible modes. Int J Numer Meth Eng 29:1595–1638 · Zbl 0724.73222 · doi:10.1002/nme.1620290802
[24] Slavković R, Miroslav Z, Kojić M (1994) Enhanced 8-node three-dimensional solid and 4-node shell elements with incompatible generalized displacements. Commun Numer Meth Eng 10:699–709 · Zbl 0808.73073 · doi:10.1002/cnm.1640100904
[25] Taylor RL, Beresford PJ, Wilson EL (1976) A non-conforming element for stress analysis. Int J Numer Meth Eng 10:1211–1219 · Zbl 0338.73041 · doi:10.1002/nme.1620100602
[26] Wilson EL, Taylor RL, Doherty WP, Ghabussi T (1973) Incompatible displacement models. In: Fenven ST et al (eds) Numerical and Computer Methods in Structural Mechanics Academic, New York, pp 43–57
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.