×

Gauge equivalence among quantum nonlinear many body systems. (English) Zbl 1178.35350

The author considers a large class of U(1)-invariant NLS equation containing complex nonlinearities. By means of the nonlinear gauge transformation he changes the nonlinear system to another one containing only a purely Hermitian nonlinearity.

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
37K05 Hamiltonian structures, symmetries, variational principles, conservation laws (MSC2010)
37K35 Lie-Bäcklund and other transformations for infinite-dimensional Hamiltonian and Lagrangian systems
35A30 Geometric theory, characteristics, transformations in context of PDEs
35A15 Variational methods applied to PDEs

References:

[1] Ablowitz, M.J., Benney, D.J.: Evolution of multi-phase modes for nonlinear dispersive waves. Stud. Appl. Math. 49, 225–238 (1979) · Zbl 0203.41001
[2] Aglietti, U., Griguolo, L., Jackiw, R., Pi, S.-Y., Seminara, D.: Anyons and chiral solitons on a line. Phys. Rev. Lett. 77, 4406–4409 (1996) · doi:10.1103/PhysRevLett.77.4406
[3] Agrawal, G.P.: Modulation instability induced by cross-phase modulation. Phys. Rev. Lett. 59, 880–883 (1987) · doi:10.1103/PhysRevLett.59.880
[4] Barashenkov, I., Harin, A.: Nonrelativistic Chern-Simons theory for the repulsive Bose gas. Phys. Rev. Lett. 72, 1575–1579 (1994) · Zbl 0973.82501 · doi:10.1103/PhysRevLett.72.1575
[5] Berkhoer, A.L., Zakharov, V.E.: Self excitation of waves with different polarizations in nonlinear media. Z. Eksp. Teor. Fiz. 58, 903–911 (1970) [Sov. Phys. JETP 31, 486–490 (1970)]
[6] Bialynicki-Birula, I., Mycielski, J.: Nonlinear wave mechanics. Ann. Phys. (NY) 100, 62–93 (1976) · doi:10.1016/0003-4916(76)90057-9
[7] Bohm, D.: A suggested interpretation of the quantum theory in terms of ”hidden” variables. Phys. Rev. 85, 166–193 (1951) · Zbl 0046.21004 · doi:10.1103/PhysRev.85.166
[8] Calogero, F., Degasperis, A., De Lillo, S.: The multicomponent Eckhaus equation. J. Phys. A: Math. Gen. 30, 5805–5814 (1997) · Zbl 0919.35125 · doi:10.1088/0305-4470/30/16/021
[9] Calogero, F.: Universal C-integrable nonlinear partial-differential equation in n+1 dimensions. J. Math. Phys. 34, 3197–3209 (1993) · Zbl 0777.35075 · doi:10.1063/1.530070
[10] Calogero, F.: C-integrable nonlinear partial-differential equations in n+1 dimensions. J. Math. Phys. 33, 1257–1271 (1992) · Zbl 0754.35166 · doi:10.1063/1.529973
[11] Calogero, F., Xiaoda, J.: C-integrable nonlinear PDES. 2. J. Math. Phys. 32, 875–887 (1991) · Zbl 0768.35071 · doi:10.1063/1.529346
[12] Calogero, F., Xiaoda, J.: C-integrable nonlinear PDES. 2. J. Math. Phys. 32, 2703–2717 (1991) · Zbl 0800.35042 · doi:10.1063/1.529112
[13] Calogero, F., De Lillo, S.: The Eckhaus PDE i {\(\psi\)} t +{\(\psi\)} xx +2(|{\(\psi\)}|2) x {\(\psi\)}+|{\(\psi\)}|4=0. Inverse Probl. 3, 633–681 (1987). Corrigendum: Inverse Probl. 4, 571 (1988) · doi:10.1088/0266-5611/3/4/012
[14] Chen, H.H., Lee, Y.C., Liu, C.S.: Integrability of non-linear Hamiltonian-systems by inverse scattering method. Phys. Scr. 20, 490–492 (1979) · Zbl 1063.37559 · doi:10.1088/0031-8949/20/3-4/026
[15] Dodonov, V.V., Mizrahi, S.S.: Generalized nonlinear Doebner-Goldin Schrödinger equation and the relaxation of quantum-systems. Physica A 214, 619–628 (1995) · Zbl 0942.82527 · doi:10.1016/0378-4371(94)00239-P
[16] Doebner, H.-D., Zhdanov, R.: Nonlinear Dirac equations and nonlinear gauge transformations (2003). arXiv:quant-ph/0304167
[17] Doebner, H.-D., Goldin, G.A., Nettermann, P.: Properties of nonlinear Schrödinger equations associated with diffeomorphism group-representations. J. Math. Phys. 40, 49 (1999) · Zbl 0960.81013 · doi:10.1063/1.532786
[18] Doebner, H.-D., Goldin, G.A.: Introducing nonlinear gauge transformations in a family of nonlinear Schrödinger equations. Phys. Rev. A 54, 3764–3771 (1996) · doi:10.1103/PhysRevA.54.3764
[19] Doebner, H.-D., Goldin, G.A.: Properties of nonlinear Schrödinger-equations associated with diffeomorphism group-representations. J. Phys. A: Math. Gen. 27, 1771–1780 (1994) · Zbl 0842.35113 · doi:10.1088/0305-4470/27/5/036
[20] Doebner, H.-D., Goldin, G.A.: On a general nonlinear Schrödinger equation admitting diffusion currents. Phys. Lett. A 162, 397–401 (1992) · doi:10.1016/0375-9601(92)90061-P
[21] Fermi, E.: Rend. R. Accad. Naz. Lincei 5, 795 (1955)
[22] Feynmann, R.P., Hibbs, A.R.: Quantum Mechanics and Path Integrals. McGraw-Hill, New York (1965) · Zbl 0176.54902
[23] Florjańczyk, M., Gagnon, L.: Dispersive-type solutions for the Eckhaus equation. Phys. Rev. A 45, 6881–6883 (1992) · doi:10.1103/PhysRevA.45.6881
[24] Florjańczyk, M., Gagnon, L.: Exact-solutions for a higher-order nonlinear Schrödinger equation. Phys. Rev. A 41, 4478–4485 (1990) · doi:10.1103/PhysRevA.41.4478
[25] Fordy, A.P.: Derivative nonlinear Schrödinger equations and hermitian symmetric-spaces. J. Phys. A: Math. Gen. 17, 1235–1245 (1984) · Zbl 0575.35081 · doi:10.1088/0305-4470/17/6/019
[26] Gedalin, M., Scott, T.C.: Optical solitary waves in the higher order nonlinear Schrödinger equation, Band Y.B. Phys. Rev. Lett. 78, 448–451 (1997) · doi:10.1103/PhysRevLett.78.448
[27] Ginzburg, V., Pitaevskii, L.: On the theory of superfluidity. Z. Eksp. Theor. Fiz. 34, 1240–1245 (1958) [Sov. Phys. JETP 7, 858–861 (1958)]
[28] Gisin, L.: Microscopic derivation of a class of non-linear dissipative Schrödinger-like equations. Physica A 111, 364–370 (1961) · doi:10.1016/0378-4371(82)90101-7
[29] Goldin, G.A.: The diffeomorphism group-approach to nonlinear quantum-systems. Int. J. Mod. Phys. B 6, 1905–1916 (1992) · Zbl 0806.58007 · doi:10.1142/S0217979292000931
[30] Goldin, G.A., Menikoff, R., Sharp, D.H.: Diffeomorphism-groups, gauge groups, and quantum-theory. Phys. Rev. Lett. 51, 2246–2249 (1983) · doi:10.1103/PhysRevLett.51.2246
[31] Grigorenko, A.N.: Measurement description by means of a nonlinear Schrödinger equation. J. Phys. A: Math. Gen. 28, 1459–1466 (1995) · Zbl 0854.60100 · doi:10.1088/0305-4470/28/5/028
[32] Gross, E.P.: Hydrodynamics of a superfluid condensate. J. Math. Phys. 4, 195–207 (1963) · doi:10.1063/1.1703944
[33] Gross, E.P.: Structure of a quantized vortex in boson systems. Nuovo Cimento 20, 454–477 (1961) · Zbl 0100.42403 · doi:10.1007/BF02731494
[34] Guerra, F., Pusterla, M.: A nonlinear Schrödinger equation and its relativistic generalization from basic principles. Lett. Nuovo Cimento 34, 351–356 (1982) · doi:10.1007/BF02817166
[35] Hacinliyan, I., Erbay, S.: Coupled quintic nonlinear Schrödinger equations in a generalized elastic solid. J. Phys. A: Math. Gen. 37, 9387–9401 (2004) · Zbl 1072.74042 · doi:10.1088/0305-4470/37/40/005
[36] Hasegawa, A., Kodama, Y.: Solitons in optical communication. Oxford University Press, London (1995) · Zbl 0840.35092
[37] Hasegawa, A., Tappert, F.D.: Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion. Appl. Phys. Lett. 23, 142–144 (1973) · doi:10.1063/1.1654836
[38] Hisakado, M., Wadati, M.: Integrable multicomponent hybrid nonlinear Schrödinger equations. J. Phys. Soc. Jpn. 64, 408–413 (1995) · Zbl 0972.35534 · doi:10.1143/JPSJ.64.408
[39] Hisakado, M., Iizuka, T., Wadati, M.: Coupled hybrid nonlinear Schrödinger equation and optical solitons. J. Phys. Soc. Jpn. 63, 2887–2894 (1994) · doi:10.1143/JPSJ.63.2887
[40] Ho, T.-L.: Spinor Bose condensates in optical traps. Phys. Rev. Lett. 81, 742–745 (1998) · doi:10.1103/PhysRevLett.81.742
[41] Jackiw, R.: A nonrelativistic chiral soliton in one dimension. J. Nonlin. Math. Phys. 4, 261–270 (1997) · Zbl 0949.35131 · doi:10.2991/jnmp.1997.4.3-4.2
[42] Jackiw, R., Pi, S.-Y.: Self-dual Chern-Simons solitons. Prog. Theor. Phys. Suppl. 107, 1–40 (1992) · Zbl 0947.81531 · doi:10.1143/PTPS.107.1
[43] Jackiw, R., Pi, S.-Y.: Classical and quantal nonrelativistic Chern-Simons theory. Phys. Rev. D 42, 3500–3513 (1990). Corrigendum: Phys. Rev. D 42, 3929–3929 (1993) · doi:10.1103/PhysRevD.42.3500
[44] Karpman, V.I., Rasmussen, J.J., Shagalov, A.G.: Dynamics of solitons and quasisolitons of the cubic third-order nonlinear Schrödinger equation. Phys. Rev. E 64, 026614–13 (2001) · doi:10.1103/PhysRevE.64.026614
[45] Karpman, V.I., Shagalov, A.G.: Evolution of solitons described by the higher-order nonlinear Schrödinger equation. II. Numerical investigation. Phys. Lett. A 254, 319–324 (1999) · doi:10.1016/S0375-9601(99)00124-3
[46] Karpman, V.I.: Evolution of solitons described by higher-order nonlinear Schrödinger equations. Phys. Lett. A 244, 397–400 (1998) · Zbl 0947.35147 · doi:10.1016/S0375-9601(98)00251-5
[47] Karpman, V.I.: Radiation by solitons due to higher-order dispersion. Phys. Rev. E 47, 2073–2082 (1993) · doi:10.1103/PhysRevE.47.2073
[48] Kaniadakis, G., Scarfone, A.M.: Nonlinear Schrödinger equations within the Nelson quantization picture. Rep. Math. Phys. 51, 225–231 (2003) · Zbl 1049.81040 · doi:10.1016/S0034-4877(03)80016-2
[49] Kaniadakis, G., Miraldi, E., Scarfone, A.M.: Cole-Hopf like transformation for a class of coupled nonlinear Schrödinger equations. Rep. Math. Phys. 49, 203–209 (2002) · Zbl 1008.35075 · doi:10.1016/S0034-4877(02)80019-2
[50] Kaniadakis, G., Scarfone, A.M.: Cole-Hopf-like transformation for Schrödinger equations containing complex nonlinearities. J. Phys. A: Math. Gen. 35, 1943–1959 (2002) · Zbl 1002.35114 · doi:10.1088/0305-4470/35/8/311
[51] Kaniadakis, G., Scarfone, A.M.: Nonlinear transformation for a class of gauged Schrödinger equations with complex nonlinearities. Rep. Math. Phys. 48, 115–121 (2001) · Zbl 1078.35114 · doi:10.1016/S0034-4877(01)80070-7
[52] Kaniadakis, G., Scarfone, A.M.: Nonlinear gauge transformation for a class of Schrödinger equations containing complex nonlinearities. Rep. Math. Phys. 46, 113–118 (2000) · Zbl 0984.81031 · doi:10.1016/S0034-4877(01)80014-8
[53] Kaniadakis, G., Quarati, P., Scarfone, A.M.: Soliton-like behavior of a canonical quantum system obeying an exclusion-inclusion principle. Physica A 255, 474–482 (1998) · doi:10.1016/S0378-4371(98)00054-5
[54] Kaniadakis, G., Quarati, P., Scarfone, A.M.: Nonlinear canonical quantum system of collectively interacting particles via an exclusion-inclusion principle. Phys. Rev. E 58, 5574–5585 (1998) · doi:10.1103/PhysRevE.58.5574
[55] Kaper, H.G., Takáč, P.: Ginzburg-Landau dynamics with a time-dependent magnetic field. Nonlinearity 11, 291–305 (1998) · Zbl 1076.35541 · doi:10.1088/0951-7715/11/2/006
[56] Kaup, D.J., Newell, A.C.: Exact solution for a derivative non-linear Schrödinger equation. J. Math. Phys. 19, 798–801 (1978) · Zbl 0383.35015 · doi:10.1063/1.523737
[57] Kostin, M.D.: Friction and dissipative phenomena in quantum mechanics. J. Stat. Phys. 12, 145–151 (1975) · doi:10.1007/BF01010029
[58] Kostin, M.D.: On the Schrödinger-Langevin equation. J. Chem. Phys. 57, 3589–3591 (1973) · doi:10.1063/1.1678812
[59] Kundu, A.: Comments on the Eckhaus PDE i {\(\psi\)} t +{\(\psi\)} xx +2(|{\(\psi\)}|2) x {\(\psi\)}+|{\(\psi\)}|4=0. Inverse Probl. 4, 1143–1144 (1988) · Zbl 0679.35039 · doi:10.1088/0266-5611/4/4/014
[60] Kundu, A.: Landau-Lifshitz and higher-order nonlinear-systems gauge generated from nonlinear Schrödinger type equations. J. Math. Phys. 25, 3433–3438 (1984) · doi:10.1063/1.526113
[61] Li, Z., Li, L., Tian, H., Zhou, G.: New types of solitary wave solutions for the higher order nonlinear Schrödinger equation. Phys. Rev. Lett. 84, 4096–4099 (2000) · doi:10.1103/PhysRevLett.84.4096
[62] Madelung, E.: Quantum theory in hydrodynamical form. Z. Phys. 40, 332–336 (1926) · JFM 52.0969.06
[63] Mahalingam, A., Porsezian, K.: Propagation of dark solitons in a system of coupled higher-order nonlinear Schrödinger equations. J. Phys. A: Math. Gen. 35, 3099–3109 (2002) · Zbl 1045.78002 · doi:10.1088/0305-4470/35/13/306
[64] Malomed, B.A., Stenflo, L.: Modulational instabilities and soliton-solutions of a generalized nonlinear Schrödinger equation. J. Phys. A: Math. Gen. 24, L1149–1153 (1991) · Zbl 0754.35161 · doi:10.1088/0305-4470/24/19/006
[65] Malomed, B.A.: Bound solitons in the nonlinear Schrödinger-Ginzburg-Landau equation. Phys. Rev. A 44, 6954–6957 (1991) · doi:10.1103/PhysRevA.44.6954
[66] Malomed, B.A., Nepomnyashchy, A.A.: Kinks and solitons in the generalized Ginzburg-Landau equation. Phys. Rev. A 42, 6009–6014 (1990) · doi:10.1103/PhysRevA.42.6009
[67] Malomed, B.A.: Evolution of nonsoliton and quasi-classical wavetrains in nonlinear Schrödinger and Korteweg-Devries equations with dissipative perturbations. Physica D 29, 155–172 (1987) · Zbl 0635.35082 · doi:10.1016/0167-2789(87)90052-2
[68] Manakov, S.V.: On the theory of two-dimensional stationary self-focusing of electromagnetic waves. Z. Eksp. Teor. Fiz. 65, 505–516 (1973) [Sov. Phys. JETP 38, 248–253 (1974)]
[69] Martina, L., Soliani, G., Winternitz, P.: Partially invariant solutions of a class of nonlinear Schrödinger equations. J. Phys. A: Math. Gen. 25, 4425–4435 (1992) · Zbl 0764.35097 · doi:10.1088/0305-4470/25/16/018
[70] Matthews, M.R., Anderson, B.P., Haljan, P.C., Hall, D.S., Holland, M.J., Williams, J.E., Wieman, C.E., Cornell, E.A.: Watching a superfluid untwist itself: Recurrence of Rabi oscillations in a Bose-Einstein condensate. Phys. Rev. Lett. 83, 3358–3361 (1999) · doi:10.1103/PhysRevLett.83.3358
[71] Mollenauer, L.F., Stolen, R.H., Gordon, J.P.: Experimental-observation of picosecond pulse narrowing and solitons in optical fibers. Phys. Rev. Lett. 45, 1095–1098 (1980) · doi:10.1103/PhysRevLett.45.1095
[72] Nakkeeran, K.: Exact dark soliton solutions for a family of N coupled nonlinear Schrödinger equations in optical fiber media. Phys. Rev. E 64, 046611–7 (2001) · doi:10.1103/PhysRevE.64.046611
[73] Nakkeeran, K.: On the integrability of the extended nonlinear Schrödinger equation and the coupled extended nonlinear Schrödinger equations. J. Phys. A: Math. Gen. 33, 3947–3949 (2000) · Zbl 0952.35134 · doi:10.1088/0305-4470/33/21/307
[74] Nakkeeran, K.: Exact soliton solutions for a family of N coupled nonlinear Schrödinger equations in optical fiber media. Phys. Rev. E 62, 1313–1321 (2000) · doi:10.1103/PhysRevE.62.1313
[75] Newboult, G.K., Parker, D.F., Faulkner, T.R.: Coupled nonlinear Schrödinger equations arising in the study of monomode step-index optical fibers. J. Math. Phys. 30, 930–936 (1989) · Zbl 0695.35154 · doi:10.1063/1.528360
[76] Noether, E.: Invariante Variationsprobleme, Nachr. Ges. Wiss. Gött. Math. Phys. Kl. 235 (1918) (English translation from Travel, M.A.: Transp. Theory Stat. Phys. 1(3), 183 (1971) · JFM 46.0770.01
[77] Olver, P.J.: Applications of Lie Groups to Differential Equations. Springer, New York (1986) · Zbl 0588.22001
[78] Pitaevskii, L.P.: Vortex lines in an imperfect Bose gas. Z. Eksp. Teor. Fiz. 40, 646–651 (1961) [Sov. Phys. JETP 13, 451–454 (1961)]
[79] Radhakrishnan, R., Kundu, A., Lakshmanan, M.: Coupled nonlinear Schrödinger equations with cubic-quintic nonlinearity: Integrability and soliton interaction in non-Kerr media. Phys. Rev. E 60, 3314–3323 (1999) · doi:10.1103/PhysRevE.60.3314
[80] Ryskin, N.M.: Schrödinger bound nonlinear equations for the description of multifrequency wave packages distribution in nonlinear medium with dispersion. Z. Eksp. Teor. Fiz. 106, 1542–1546 (1994) [Sov. Phys. JETP 79, 833–834 (1994)]
[81] Sakovich, S.Y., Tsuchida, T.: Symmetrically coupled higher-order nonlinear Schrödinger equations: singularity analysis and integrability. J. Phys. A: Math. Gen. 33, 7217–7226 (2000) · Zbl 0959.35153 · doi:10.1088/0305-4470/33/40/316
[82] Scarfone, A.M.: Stochastic quantization of an interacting classical particle system, J. Stat. Mech.: Theory Exp. P03012+16 (2007)
[83] Scarfone, A.M.: Canonical quantization of classical systems with generalized entropies. Rep. Math. Phys. 55, 169–177 (2005) · Zbl 1090.82023 · doi:10.1016/S0034-4877(05)00012-1
[84] Scarfone, A.M.: Canonical quantization of nonlinear many-body systems. Phys. Rev. E 71, 051103–15 (2005) · doi:10.1103/PhysRevE.71.051103
[85] Scarfone, A.M.: Gauge transformation of the third kind for U(1)-invariant coupled Schrödinger equations. J. Phys. A: Math. Gen. 38, 7037–7050 (2005) · Zbl 1073.81032 · doi:10.1088/0305-4470/38/31/012
[86] Schuch, D.: Nonunitary connection between explicitly time-dependent and nonlinear approaches for the description of dissipative quantum systems. Phys. Rev. A 53, 945–940 (1997)
[87] Schuch, D., Chung, K.-M., Hartmann, H.: Nonlinear Schrödinger-type field equation for the description of dissipative systems 3. Frictionally damped free motion as an example for an aperiodic motion. J. Math. Phys. 25, 3086–3092 (1984) · Zbl 1188.70056 · doi:10.1063/1.526024
[88] Shchesnovich, V.S., Doktorov, E.V.: Perturbation theory for the modified nonlinear Schrödinger solitons. Physica D 129, 115–129 (1999) · Zbl 0935.35156 · doi:10.1016/S0167-2789(98)00209-7
[89] Shi, H., Zheng, W.-M.: Bose-Einstein condensation in an atomic gas with attractive interactions. Phys. Rev. A 55, 2930–2934 (1997) · doi:10.1103/PhysRevA.55.2930
[90] Stratopoulos, G.N., Tomaras, T.N.: Vortex pairs in charged fluids. Phys. Rev. B 54, 12493–12504 (1996) · doi:10.1103/PhysRevB.54.12493
[91] Stringari, S.: Collective excitations of a trapped Bose condensed gas. Phys. Rev. Lett. 77, 2360–2363 (1996) · doi:10.1103/PhysRevLett.77.2360
[92] Tsuchida, T., Wadati, M.: Complete integrability of derivative nonlinear Schrödinger-type equations. Inverse Probl. 15, 1363–1373 (1999) · Zbl 0936.37047 · doi:10.1088/0266-5611/15/5/317
[93] Tsuchida, T., Wadati, M.: New integrable systems of derivative nonlinear Schrödinger equations with multiple components. Phys. Lett. A 257, 53–64 (1999) · Zbl 0936.37043 · doi:10.1016/S0375-9601(99)00272-8
[94] Vinoj, M.N., Kuriakose, V.C.: Multisoliton solutions and integrability aspects of coupled higher-order nonlinear Schrödinger equations. Phys. Rev. E 62, 8719–8725 (2000) · doi:10.1103/PhysRevE.62.8719
[95] Weinberg, S.: Precision tests of quantum mechanics. Phys. Rev. Lett. 62, 485–488 (1989) · doi:10.1103/PhysRevLett.62.485
[96] Weinberg, S.: Testing quantum mechanics. Ann. Phys. 194, 336–386 (1989) · doi:10.1016/0003-4916(89)90276-5
[97] Weinberg, S.: Understanding the Fundamental Constitutents of Matter. Plenum, New York (1978). A. Zichichi (ed.)
[98] Wilczek, F.: Fractional Statistics and Anyon Superconductivity. World Scientific, Singapore (1990) · Zbl 0709.62735
[99] Wilczek, F.: Magnetic flux, angular momentum, and statistics. Phys. Rev. Lett. 48, 1144–1146 (1982) · doi:10.1103/PhysRevLett.48.1144
[100] Yip, S.-K.: Internal vortex structure of a trapped spinor Bose-Einstein condensate. Phys. Rev. Lett. 83, 4677–4681 (1999) · doi:10.1103/PhysRevLett.83.4677
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.