×

Idempotent uninorms on finite ordinal scales. (English) Zbl 1178.03070

Normally in fuzzy set theory the unit interval \([0,1]\) serves as an evaluation set for the degrees of membership, and triangular norms and conorms are used to represent intersections respectively unions of such fuzzy sets. In practical applications, however, it happens frequently that linguistic variables occur with a finite number of totally ordered values, such as very low, low, medium, high and very high. In this contribution such a finite ordinal scale is considered. Triangular norms and conorms are special instances of uninorms, introduced by J. Dombi, where the neutral element can be any number in the unit interval. So this paper is interesting both from a theoretical as well as a practical point of view. More particularly, the authors give a characterization of a special class of uninorms on a finite ordinal scale, namely the idempotent ones. Remarkable in this characterization is the prominent role of the neutral element of the uninorm. As a corollary of this characterization it is shown that the total number of idempotent uninorms on a set of \(n+1\) elements equals 2 to the power \(n\).
Reviewer: E. Kerre (Gent)

MSC:

03E72 Theory of fuzzy sets, etc.
68T37 Reasoning under uncertainty in the context of artificial intelligence
Full Text: DOI

References:

[1] DOI: 10.1016/S0165-0114(98)00259-0 · Zbl 0935.03060 · doi:10.1016/S0165-0114(98)00259-0
[2] DOI: 10.1109/91.890343 · doi:10.1109/91.890343
[3] DOI: 10.1002/(SICI)1098-111X(199909)14:9<909::AID-INT4>3.0.CO;2-B · Zbl 0948.68173 · doi:10.1002/(SICI)1098-111X(199909)14:9<909::AID-INT4>3.0.CO;2-B
[4] DOI: 10.1109/TFUZZ.2003.817851 · doi:10.1109/TFUZZ.2003.817851
[5] DOI: 10.1016/j.fss.2003.11.002 · Zbl 1045.03029 · doi:10.1016/j.fss.2003.11.002
[6] DOI: 10.1002/int.4550080703 · Zbl 0785.68087 · doi:10.1002/int.4550080703
[7] DOI: 10.1016/0165-0114(95)00133-6 · Zbl 0871.04007 · doi:10.1016/0165-0114(95)00133-6
[8] DOI: 10.1007/978-94-017-0231-7_16 · doi:10.1007/978-94-017-0231-7_16
[9] DOI: 10.1016/B978-044451814-9/50007-0 · doi:10.1016/B978-044451814-9/50007-0
[10] DOI: 10.1109/TFUZZ.2004.840129 · doi:10.1109/TFUZZ.2004.840129
[11] Drygaś P., Kybernetika 41 pp 213–
[12] De Baets B., Characterization of uninorms with given continuous underlying t-norms and t-conorms
[13] DOI: 10.1007/978-3-540-71258-9_3 · Zbl 1128.03014 · doi:10.1007/978-3-540-71258-9_3
[14] De Baets B., Uninorms: Classification and representation
[15] Roberts F. S., Encyclopedia of Mathematics and its Applications 7 (1978)
[16] DOI: 10.1016/S0377-2217(98)00325-7 · Zbl 0933.03071 · doi:10.1016/S0377-2217(98)00325-7
[17] DOI: 10.1016/S0165-0114(02)00430-X · Zbl 1022.03038 · doi:10.1016/S0165-0114(02)00430-X
[18] DOI: 10.1016/0165-0114(84)90072-1 · Zbl 0555.94027 · doi:10.1016/0165-0114(84)90072-1
[19] Maes K. C., Bulletin of the Belgian Mathematical Society - Simon Stevin 14 pp 99–
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.