×

Computing delay resistant railway timetables. (English) Zbl 1177.90172

Summary: In the past, much research has been dedicated to compute optimum railway timetables. A typical objective has been the minimization of passenger waiting times. But only the planned nominal waiting times have been addressed, whereas delays as they occur in daily operations have been neglected. Delays have been rather treated mainly in an online context and solved as a separate optimization problem, called delay management.
We provide the first computational study which aims at computing delay resistant periodic timetables. In particular we assess the delay resistance of a timetable by evaluating it subject to several delay scenarios to which optimum delay management will be applied.
We arrive at computing delay resistant timetables by selecting a new objective function which we design to be somehow in the middle of the traditional simple timetabling objective and the sophisticated delay management objective. This is a slight extension of the concept of “light robustness” (LR) as it has been proposed by M. Fischetti and M. Monaci [Robust optimization through branch-and-price. in: Proceedings of AIRO (2006)]. Moreover, in our application we are able to provide accurate interpretations for the ingredients of LR. We apply this new technique to real-world data of a part of the German railway network of Deutsche Bahn AG. Our computational results suggest that a significant decrease of passenger delays can be obtained at a relatively small price of robustness, i.e. by increasing the nominal travel times of the passengers.

MSC:

90B35 Deterministic scheduling theory in operations research
90C11 Mixed integer programming
90B90 Case-oriented studies in operations research

Software:

PESPLib

References:

[1] Bissantz, N.; Güttler, S.; Jacobs, J.; Kurby, S.; Schaer, T.; Schöbel, A.; Scholl, S., DisKon—Disposition und Konfliktlösungsmanagement für die beste Bahn, Eisenbahntechnische Rundschau (ETR), 45, 12, 809-821 (2005), [in German]
[2] Conte, C.; Schöbel, A., Identifying dependencies among delays, (Proceedings of IAROR 2007 (2007)), ISBN 978-90-78271-02-4 · Zbl 1157.90302
[3] Daduna, J. R.; Voß, S., Practical experiences in schedule synchronization, (Daduna, J. R.; Branco, I.; Paixao, J. M.P., CASPT. Lecture notes in economics and mathematical systems, vol. 430 (1995), Springer: Springer Berlin), 39-55 · Zbl 0853.90041
[4] Ehrhoff, J.; Grothklags, S.; Lorenz, U., Parallelism for perturbation management and robust plans, (Cunha, J. C.; Medeiros, P. D., Euro-Par. Lecture notes in computer science, vol. 3648 (2005), Springer: Springer Berlin), 1265-1274
[5] Engelhardt-Funke, O.; Kolonko, M., Analysing stability and investments in railway networks using advanced evolutionary algorithms, International Transactions in Operational Research, 11, 381-394 (2004) · Zbl 1131.90323
[6] Fischetti, M.; Monaci, M., Robust optimization through branch-and-price, (Proceedings of AIRO (2006))
[7] Gatto, M.; Glaus, B.; Jacob, R.; Peeters, L.; Widmayer, P., Railway delay management: exploring its algorithmic complexity, (Algorithm theory—Proceedings of SWAT 2004. Lecture notes in computer science, vol. 3111 (2004), Springer: Springer Berlin), 199-211 · Zbl 1095.68595
[8] Gatto, M.; Jacob, R.; Peeters, L.; Schöbel, A., The computational complexity of delay management, (Kratsch, D., Graph-theoretic concepts in computer science: 31st international workshop (WG 2005). Lecture notes in computer science, vol. 3787 (2005))
[9] Gatto M, Jacob R, Peeters L, Widmayer P. On-line delay management on a single train line. In: Geraets F, et al., editors. Algorithmic methods for railway optimization, Lecture notes in computer science, vol. 4359. Berlin: Springer; 2007. Presented at ATMOS 2004. p. 306-320.; Gatto M, Jacob R, Peeters L, Widmayer P. On-line delay management on a single train line. In: Geraets F, et al., editors. Algorithmic methods for railway optimization, Lecture notes in computer science, vol. 4359. Berlin: Springer; 2007. Presented at ATMOS 2004. p. 306-320.
[10] Ginkel, A.; Schöbel, A., To wait or not to wait? The bicriteria delay management problem in public transportation, Transportation Science, 41, 4, 527-538 (2007)
[11] Giovanni L, Heilporn G, Labbé M. Optimization models for the delay management problem in public transportation. European Journal of Operational Research 2006, doi:10.1016/j.ejor.2006.10.065; Giovanni L, Heilporn G, Labbé M. Optimization models for the delay management problem in public transportation. European Journal of Operational Research 2006, doi:10.1016/j.ejor.2006.10.065
[12] Heidergott, B.; de Vries, R., Towards a control theory for transportation networks, Discrete Event Dynamic Systems, 11, 371-398 (2001) · Zbl 0999.93046
[13] Klemt, W.-D.; Stemme, W., Schedule synchronization for public transit networks, (Daduna, J. R.; Wren, A., Computer-aided transit scheduling—Proceedings of the fourth international workshop on computer-aided scheduling of public transport. Lecture notes in economics and mathematical systems, vol. 308 (1988), Springer: Springer Berlin), 327-335
[14] Kroon L, Dekker R, Vromans M. Cyclic railway timetabling: a stochastic optimization approach. In: Geraets F, et al., editors. Algorithmic methods for railway optimization, Lecture notes in Computer Science, vol. 4359. Berlin: Springer, 2007. p. 41-66.; Kroon L, Dekker R, Vromans M. Cyclic railway timetabling: a stochastic optimization approach. In: Geraets F, et al., editors. Algorithmic methods for railway optimization, Lecture notes in Computer Science, vol. 4359. Berlin: Springer, 2007. p. 41-66.
[15] Kroon, L. G.; Peeters, L. W., A variable trip time model for cyclic railway timetabling, Transportation Science, 37, 198-212 (2003)
[16] Liebchen C. Periodic timetable optimization in public transport. Dissertation, de-Verlag im Internet, Berlin; 2006.; Liebchen C. Periodic timetable optimization in public transport. Dissertation, de-Verlag im Internet, Berlin; 2006.
[17] Liebchen C. The first optimized railway timetable in practice. Transportation Science 2008, doi:10.1287/trsc.1080.0240; Liebchen C. The first optimized railway timetable in practice. Transportation Science 2008, doi:10.1287/trsc.1080.0240
[18] Liebchen, C.; Möhring, R. H., The modeling power of the periodic event scheduling problem: railway timetables—and beyond, (Geraets, F.; etal., Algorithmic methods for railway optimization, Lecture notes in computer science, vol. 4359 (2004), Springer: Springer Berlin), 3-40
[19] Liebchen C, Peeters LW. Integral cycle bases for cyclic timetabling. Discrete Optimization 2008, doi:10.1016/j.disopt.2008.09003; Liebchen C, Peeters LW. Integral cycle bases for cyclic timetabling. Discrete Optimization 2008, doi:10.1016/j.disopt.2008.09003
[20] Liebchen, C.; Proksch, M.; Wagner, F. H., Performance of algorithms for periodic timetable optimization, (Hickman, M.; Mirchandani, P.; Voß, S., Computer-aided transit scheduling—Proceedings of the ninth international workshop on computer-aided scheduling of public transport (CASPT). Lecture notes in economics and mathematical systems, vol. 600 (2008), Springer: Springer Berlin), 151-180 · Zbl 1169.90315
[21] Liebchen C, Stiller S. Delay resistant timetabling. Public Transport 2008, doi:10.1007/s12469-008-0004-3; Liebchen C, Stiller S. Delay resistant timetabling. Public Transport 2008, doi:10.1007/s12469-008-0004-3
[22] Lindner T. Train schedule optimization in public rail transport. PhD thesis, Technische Universität Braunschweig; 2000.; Lindner T. Train schedule optimization in public rail transport. PhD thesis, Technische Universität Braunschweig; 2000. · Zbl 1048.90114
[23] Nachtigall K. Periodic network optimization and fixed interval timetables. Habilitation thesis, Universität Hildesheim; 1998.; Nachtigall K. Periodic network optimization and fixed interval timetables. Habilitation thesis, Universität Hildesheim; 1998.
[24] Odijk, M. A., A constraint generation algorithm for the construction of periodic railway timetables, Transportation Research B, 30, 6, 455-464 (1996)
[25] de Vries, B. D.S. R.; Moor, B. D., On max-algebraic models for transportation networks, (Proceedings of the international workshop on discrete event systems, Cagliari, Italy (1998)), 457-462
[26] Rockafellar, R. T., Network flows and monotropic optimization (1984), Wiley: Wiley New York · Zbl 0596.90055
[27] Schachtebeck, M.; Schöbel, A., IP-based techniques for delay management with priority decisions, (ATMOS 2008—Eighth workshop on algorithmic approaches for transportation modeling, optimization, and systems, Dagstuhl, Germany (2008), Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI): Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI) Schloss Dagstuhl, Germany) · Zbl 1247.90063
[28] Schöbel, A., A model for the delay management problem based on mixed-integer programming, Electronic Notes in Theoretical Computer Science, 50, 1 (2001)
[29] Schöbel, A., Customer-oriented optimization in public transportation, (Optimization and its applications, vol. 3 (2006), Springer: Springer New York) · Zbl 1136.90002
[30] Schöbel A. Capacity constraints in delay management. Technical Report, ARRIVAL Report TR-0017; 2007.; Schöbel A. Capacity constraints in delay management. Technical Report, ARRIVAL Report TR-0017; 2007.
[31] Schöbel A. Integer programming approaches for solving the delay management problem. In: Geraets F, et al., editors. Algorithmic methods for railway optimization, Lecture notes in computer science, vol. 4359. Berlin: Springer; 2007. p. 145-70.; Schöbel A. Integer programming approaches for solving the delay management problem. In: Geraets F, et al., editors. Algorithmic methods for railway optimization, Lecture notes in computer science, vol. 4359. Berlin: Springer; 2007. p. 145-70.
[32] Schrijver A, Steenbeek AG. Dienstregelingontwikkeling voor Railned. Rapport CADANS 1.0, Centrum voor Wiskunde en Informatica, December 1994 [in Dutch].; Schrijver A, Steenbeek AG. Dienstregelingontwikkeling voor Railned. Rapport CADANS 1.0, Centrum voor Wiskunde en Informatica, December 1994 [in Dutch].
[33] Serafini, P.; Ukovich, W., A mathematical model for periodic scheduling problems, SIAM Journal on Discrete Mathematics, 2, 4, 550-581 (1989) · Zbl 0676.90030
[34] Suhl, L.; Biederbick, C.; Kliewer, N., Design of customer-oriented dispatching support for railways, (Voß, S.; Daduna, J., Computer-aided transit scheduling. Lecture notes in economics and mathematical systems, vol. 505 (2001), Springer: Springer Berlin), 365-386 · Zbl 0994.90041
[35] Suhl, L.; Mellouli, T., Supporting planning and operation time control in transportation systems, (Operations research proceedings 1996 (1997), Springer: Springer Berlin), 374-379 · Zbl 0916.90088
[36] Suhl, L.; Mellouli, T., Requirements for, and design of, an operations control system for railways, (Computer-aided transit scheduling (1999), Springer: Springer Berlin)
[37] Suhl, L.; Mellouli, T.; Biederbick, C.; Goecke, J., Managing and preventing delays in railway traffic by simulation and optimization, (Pursula, M.; Niittymäki, Mathematical methods on optimization in transportation systems (2001), Kluwer: Kluwer Dordrecht), 3-16 · Zbl 1005.90523
[38] Wagner, U., Pünktliche Abfahrt verhindert Domino-Effekt auf dem Gleis, BahnZeit (employee newsletter of Deutsche Bahn AG), 5, 4 (2004), [in German]
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.