×

State-dependent delay in regenerative turning processes. (English) Zbl 1177.74197

Summary: Stability of a two degrees of freedom model of the turning process is considered. An accurate modeling of the surface regeneration shows that the regenerative delay, determined by the combination of the workpiece rotation and the tool vibrations, is in fact state-dependent. For that reason, the mathematical model considered in this paper is a delay-differential equation with state-dependent time delay. In order to study linearized stability of stationary cutting processes, an associated linear system, corresponding to the state-dependent delay equation, is derived. Stability analysis of this linear system is performed analytically. A comparison between the state-dependent delay model and the previously used constant or time-periodic delay models shows that the incorporation of the state-dependent delay into the model slightly affects the linear stability properties of the system in certain parameter domains.

MSC:

74H55 Stability of dynamical problems in solid mechanics
74H45 Vibrations in dynamical problems in solid mechanics
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
Full Text: DOI

References:

[1] Tlusty, J., Polacek, A., Danek, C., Spacek, J.: Selbsterregte schwingungen an Werkzeugmaschinen. VEB Verlag Technik, Berlin (1962)
[2] Tobias, S.A.: Machine Tool Vibration. Blackie, London (1965)
[3] Balachandran, B., Zhao, M.X.: A mechanics based model for study of dynamics of milling operations. Meccanica 35(2), 89–109 (2000) · Zbl 1090.74607 · doi:10.1023/A:1004887301926
[4] Peigne, G., Paris, H., Brissaud, D., Gouskov, A.: Impact of the cutting dynamics of small radial immersion milling operations on machined surface roughness. Int. J. Mach. Tools Manuf. 44(11), 1133–1142 (2004) · doi:10.1016/j.ijmachtools.2004.04.012
[5] Stépán, G.: Retarded dynamical systems. Longman, Harlow (1989) · Zbl 0686.34044
[6] Altintas, Y., Budak, E.: Analytical prediction of stability lobes in milling. Ann. CIRP 44(1), 357–362 (1995) · doi:10.1016/S0007-8506(07)62342-7
[7] Insperger, T., Mann, B.P., Stépán, G., Bayly, P.V.: Stability of up-milling and down-milling, Part 1: Alternative analytical methods. Int. J. Mach. Tools Manuf. 43(1), 25–34 (2003) · doi:10.1016/S0890-6955(02)00159-1
[8] Bayly, P.V., Halley, J.E., Mann, B.P., Davies, M.A.: Stability of interrupted cutting by temporal finite element analysis. J. Manuf. Sci. Eng. 125(2), 220–225 (2003) · doi:10.1115/1.1556860
[9] Faassen, R.P.H., van de Wouw, N., Oosterling, J.A.J., Nijmeijer, H.: Prediction of regenerative chatter by modeling and analysis of high-speed milling. Int. J. Mach. Tools Manuf. 43(14), 1437–1446 (2003) · doi:10.1016/S0890-6955(03)00171-8
[10] Szalai, R., Stépán, G.: Stability boundaries of high-speed milling corresponding to period doubling are essentially closed curves. Proceedings of ASME International Mechanical Engineering Conference and Exposition, Washington D.C., USA, paper no. IMECE2003-42122 (2003)
[11] Corpus, W.T., Endres, W.J.: Added stability lobes in machining processes that exhibit periodic time variation – Part 1: An analytical solution. J. Manuf. Sci. Eng. 126(3), 467–474 (2004)
[12] Merdol, S.D., Altintas, Y.: Multi frequency solution of chatter stability for low immersion milling. J. Manuf. Sci. Eng. 126(3), 459–466 (2004) · doi:10.1115/1.1765139
[13] Gradišek, J., Kalveram, M., Insperger, T., Weinert, K., Stépán, G., Govekar, E., Grabec, I.: On stability prediction for milling. Int. J. Mach. Tools Manuf. 45(7–8), 769–781 (2005) · doi:10.1016/j.ijmachtools.2004.11.015
[14] Long, X.-H., Balachandran, B.: Milling model with variable time delay. Proceedings of the 2004 ASME International Mechanical Engineering Congress and Exposition, Anaheim, CA, paper no. IMECE2004-59207 (2004)
[15] Long, X.-H., Balachandran, B., Mann, B.P.: Dynamics of milling processes with variable time delay. Nonlinear Dyn., in this issue (2006) · Zbl 1180.70030
[16] Faassen, R., van de Wouw, N., Oosterling, H., Nijmeijer, H.: Updated tool path modelling with periodic delay for chatter prediction in milling. Fifth EUROMECH Nonlinear Dynamics Conference, ENOC 2005, Eindhoven, The Netherlands, pp. 1080–1089 (2005)
[17] Sexton, J.S., Milne, R.D., Stone, B.J.: A stability analysis of single point machining with varying spindle speed. Appl. Math. Modelling 1, 310–318 (1977) · doi:10.1016/0307-904X(77)90062-2
[18] Jayaram, S., Kapoor, S.G., DeVor, R.E.: Analytical stability analysis of variable spindle speed machining. J. Manuf. Sci. Eng. 122(3), 391–397 (2000) · doi:10.1115/1.1285890
[19] Insperger, T., Stépán, G.: Stability analysis of turning with periodic spindle speed modulation via semi-discretization. J. Vib. Control 10(12), 1835–1855 (2004) · Zbl 1093.70010 · doi:10.1177/1077546304044891
[20] Insperger, T., Stépán, G.: Semi-discretization method for delayed systems, Int. J. Numer. Methods Eng. 55(5), 503–518 (2002) · Zbl 1032.34071
[21] Insperger, T., Stépán, G.: Updated semi-discretization method for periodic delay-differential equations with discrete delay, Int. J. Numer. Methods Eng. 61(1), 117–141 (2004) · Zbl 1083.70002
[22] Gyori, I., Hartung, F.: On the exponential stability of a state-dependent delay equation. Acta Sci. Math. 66, 71–84 (2000) · Zbl 0966.34068
[23] Krisztin, T., Arino, O.: The 2-dimensional attractor of a differential equation with state-dependent delay. J. Dynam. Differ. Equ. 13, 453–522 (2001) · Zbl 1016.34075 · doi:10.1023/A:1016635223074
[24] Hartung, F., Turi, J.: Linearized stability in functional-differential equations with state-dependent delays. Proceedings of the conference Dynamical Systems and Differential Equations, added volume of Discrete and Continuous Dynamical Systems, pp. 416–425 (2000) · Zbl 1301.34090
[25] Luzyanina, T., Engelborghs, K., Roose, D.: Numerical bifurcation analysis of differential equations with state-dependent delay. Int. J. Bifurcation Chaos 11(3), 737–753 (2001) · Zbl 1090.65551 · doi:10.1142/S0218127401002407
[26] Hartung, F.: Linearized stability in periodic functional differential equations with state-dependent delays J. Comput. Appl. Math. 174, 201–211 (2005) · Zbl 1077.34074 · doi:10.1016/j.cam.2004.04.006
[27] Richard, T., Germay, C., Detournay, E.: Self-excited stick-slip oscillations of drill bits. Comptes rendus Mecanique 332(8), 619-626 (2004) · Zbl 1294.74038
[28] Germay, C., van de Wouw, N., Sepulchure, R., Nijmeijer, H.: Axial stick-slip limit cycling in drill-string dynamics with delay, Fifth EUROMECH Nonlinear Dynamics Conference, ENOC 2005, Eindhoven, The Netherlands pp. 1136-1143 (2005)
[29] Insperger, T., Stépán, G., Hartung, F., Turi, J.: State-dependent regenerative delay in milling processes. in Proceedings of ASME International Design Engineering Technical Conferences, Long Beach CA, (2005), paper no. DETC2005-85282 (2005)
[30] Hartung, F., Turi, J.: On differentiability of solutions with respect to parameters in state-dependent delay equations. J. Differ. Equ. 135(2), 192–237 (1997) · Zbl 0877.34045 · doi:10.1006/jdeq.1996.3238
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.