×

The effect of bonding layer properties on the dynamic behaviour of surface-bonded piezoelectric sensors. (English) Zbl 1177.74157

Summary: The dynamic behaviour of piezoelectric sensors depends on the bonding condition along the interface between the sensors and the host structure. This paper provides a comprehensive theoretical study of the effect of the bonding layer on the coupled electromechanical characteristics of a piezoelectric sensor bonded to an elastic substrate, which is subjected to a high frequency elastic wave. A sensor model with a viscoelastic bonding layer, which undergoes a shear deformation, is proposed to simulate the two dimensional electromechanical behaviour of the integrated system. Analytical solution of the problem is provided by using Fourier transform and solving the resulting integral equations in terms of the interfacial stress. Numerical simulation is conducted to study the effect of the bonding layer upon the dynamic response of the sensor under different loading frequencies. The results indicate that the modulus and the thickness of the bonding layer have significant effects on sensor response, but the viscosity of the bonding layer is relatively less important.

MSC:

74F15 Electromagnetic effects in solid mechanics
74J05 Linear waves in solid mechanics
Full Text: DOI

References:

[1] Gandhi, M. V.; Thompson, B. S.: Smart materials and structures, (1992)
[2] Banks, H. T.; Smith, R. C.; Wang, Y.: Smart material structures: modelling, estimation and control masson, (1996) · Zbl 0882.93001
[3] Chee, C.; Tong, L.; Steven, G. P.: A review on the modeling of piezoelectric sensors and actuators incorporated in intelligent structures, Journal of intelligent material systems and structures 9, 3-19 (1998)
[4] Cohen, Y. B.: Emerging NDE technologies and challenges at the beginning of the 3rd millennium-part I, Material evaluation 58, No. 1, 17-30 (2000)
[5] Boller, C.: Next generation structural health monitoring and its integration into aircraft design, International journal of systems science 31, 1333-1349 (2000) · Zbl 1080.93513 · doi:10.1080/00207720050197730
[6] Park, G.; Farrar, C. R.; Di Scalea, F. L.; Coccia, S.: Performance assessment and validation of piezoelectric active-sensors in structural health monitoring, Smart materials and structures 15, 1673-1683 (2006)
[7] Dalton, R. P.; Cawley, P.; Lowe, M.: The potential of guided waves for monitoring large areas of metallic aircraft fuselage structure, Journal of nondestructive evaluation 20, 29-46 (2001)
[8] Giurgiutiu, V.; Zagrai, A.; Bao, J. J.: Piezoelectric wafer embedded active sensors for aging aircraft structural health monitoring, Structural health monitoring 1, No. 1, 41-61 (2002)
[9] Fukunaga, H.; Hu, N.; Chang, F. K.: Structural damage identification using piezoelectric sensors, International journal of solids and structures 39, 393-418 (2001) · Zbl 1081.74549 · doi:10.1016/S0020-7683(01)00149-4
[10] Park, J. M.; Kong, J. W.; Kim, D. S.; Yoon, D. J.: Nondestructive damage detection and interfacial evaluation of single-fibers/epoxy composites using PZT, PVDF and \(P(VDF-trfe)\) copolymer sensors, Composites science and technology 65, No. 2, 241-256 (2005)
[11] Crawley, E. F.; De Luis, J.: Use of piezoelectric actuators as elements of intelligent structures, AIAA journal 25, No. 10, 1373-1385 (1987)
[12] Crawley, E. F.; Anderson, E. H.: Detailed models of piezoelectric actuation of beams, Journal of intelligent material systems and structures 1, 4-25 (1990)
[13] Lin, M. W.; Rogers, C. A.: Actuation response of a beam structure with induced strain actuators, Adaptive structures and material systems AD 35, 129-139 (1993)
[14] Dimitriadis, E. K.; Fuller, C. R.; Rogers, C. A.: Piezoelectric actuators for distributed vibration excitation of thin plates, ASME journal of vibration and acoustics 113, 100-107 (1991)
[15] Tzou, H. S.; Tseng, C. I.: Distributed vibration control and identification of coupled elastic/piezoelectric systems, Mechanical systems and signal processing 5, 215-231 (1991)
[16] Mitchell, J. A.; Reddy, J. N.: A study of embedded piezoelectric layers in composite cylinders, ASME journal of applied mechanics 62, 166-173 (1995) · Zbl 0825.73628 · doi:10.1115/1.2895898
[17] Banks, H. T.; Smith, R. C.: The modelling of piezoceramic patch interactions with shells, plates, and beams, Quarterly of applied mathematics 53, 353-381 (1995) · Zbl 0832.73061
[18] Han, J. H.; Lee, I.: Analysis of composite plates with piezoelectric actuators for vibration control using layerwise displacement theory, Composites part B 29, 519-672 (1998)
[19] Wang, X. D.; Meguid, S. A.: On the electroelastic behaviour of a thin piezoelectric actuator attached to an infinite host structure, International journal of solids and structures 37, 3231-3251 (2000) · Zbl 0992.74033 · doi:10.1016/S0020-7683(99)00118-3
[20] Zhang, J. Q.; Zhang, B. N.; Fan, J. H.: A coupled electromechanical analysis of a piezoelectric layer bonded to an elastic substrate: part I. Development of governing equations, International journal of solids and structures 40, 6781-6797 (2003) · Zbl 1074.74027 · doi:10.1016/S0020-7683(03)00307-X
[21] Zhang, B. N.; Zhang, J. Q.; Fan, J. H.: A coupled electromechanical analysis of a piezoelectric layer bonded to an elastic substrate: part II. Numerical solution and applications, International journal of solids and structures 40, 6612-6799 (2003) · Zbl 1069.74018 · doi:10.1016/S0020-7683(03)00312-3
[22] Wang, X. D.: Coupled electromechanical behaviour of piezoelectric actuators in smart structures, Journal of intelligent material system and structures 10, No. 3, 232-241 (1999)
[23] Wang, X. D.; Huang, G. L.: Wave propagation generated by piezoelectric actuators attached to elastic substrates, Acta mechanica 183, 155-176 (2006) · Zbl 1158.74393 · doi:10.1007/s00707-006-0313-z
[24] Wang, X. D.; Huang, G. L.: The coupled dynamic behaviour of piezoelectric sensors bonded to elastic media, Journal of intelligent material systems and structures 17, 883-894 (2006)
[25] Akella, P.; Chen, X.; Cheng, W.; Hughes, D.; Wen, J. T.: Modelling and control of smart structures with bonded piezoelectric sensors and actuators, Smart materials and structures 3, 344-353 (1994)
[26] Nakra, B. C.: Vibration control in machines and structures using viscoelastic damping, Journal of sound and vibration 211, No. 3, 449-465 (2005)
[27] Park, J. M.; Kim, D. S.; Han, S. B.: Properties of interfacial adhesion for vibration controllability of composite materials as smart structures, Composites science and technology 60, 1953-1963 (2000)
[28] Pietrzakowski, M.: Active damping of beams by piezoelectric system: effects of bonding layer properties, Solids and structures 38, 7885-7897 (2001) · Zbl 1006.74523 · doi:10.1016/S0020-7683(01)00105-6
[29] De Faria, A. R.: The impact of finite stiffness bonding on the sensing effectiveness of piezoelectric patches, Smart materials and structures 12, N5-N8 (2003)
[30] Lee, C. K.; Moon, F. C.: Laminated piezopolymer plates for torsion and bending sensors and actuators, Journal of the acoustic society of America 85, No. 6, 2432-2439 (1989)
[31] Achenbach, J. D.: Wave propagation in elastic solids, (1973) · Zbl 0268.73005
[32] Park, Y. E.: Crack extension force in a piezoelectric material, ASME journal of applied mechanics 57, 647-653 (1990) · Zbl 0724.73191 · doi:10.1115/1.2897071
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.