×

The dynamical nature of a backlash system with and without fluid friction. (English) Zbl 1177.70029

Summary: We study the dynamics of a simple system with backlash and impacts. Both the presence or the absence of fluid friction is considered. The fluid friction is modeled by a fractional derivative, but it is also shown how an inhomogeneous time scale, although not arising from a fractional differential equation, may lead to some features similar to fractional solutions.

MSC:

70K99 Nonlinear dynamics in mechanics
76D99 Incompressible viscous fluids
26A33 Fractional derivatives and integrals
Full Text: DOI

References:

[1] Special issue on Non-Smooth Mechanics, Phil. Trans. of the Royal Soc. of London: Math., Phys. and Eng. Sciences, 359, (December 15) (2001) · Zbl 0991.00014
[2] Tao, G., Kokotovic, P.V.: Adaptive control of systems with unknown output backlash. IEEE Trans. Autom. Control 40, 326–330 (1995) · Zbl 0825.93351 · doi:10.1109/9.341803
[3] Stepanenko, Y., Sankar, T.S.: Vibro-impact analysis of control systems with mechanical clearance and its application to robotic actuators. ASME J. Dyn. Syst. Meas. Contr. 108, 9–16 (1986) · Zbl 0591.93053 · doi:10.1115/1.3143750
[4] Karagiannis, K., Pfeiffer, F.: Theoretical and experimental investigations of gear-rattling. Nonlinear Dyn. 2, 367–387 (1991) · doi:10.1007/BF00045670
[5] Feng, Q., Pfeiffer, F.: Stochastic model on a rattling system. J. Sound Vib. 215, 439–453 (1998) · doi:10.1006/jsvi.1998.1646
[6] Özgüven, H.N., Housen, D.R.: Mathematical models used in gear dynamics-a review. J. Sound Vib. 121, 383–411 (1998)
[7] Faria, M., Streit, L., Vilela Mendes, R.: Map dynamics in gearbox models. In: Proceedings of 2nd European Symposium on Mathematics in Industry, H. Neunzert (ed.) B. G. Teubner, Stuttgart (1988) · Zbl 0850.70030
[8] Hongler, M.O., Streit, L.: On the origin of chaos in gearbox models. Phy. D 29, 402–408 (1988) · Zbl 0657.70026 · doi:10.1016/0167-2789(88)90038-3
[9] Litak, G., Friswell, M.I.: Vibrations in gear systems. Chaos Solitons Fractals 16, 145–150 (2003) · Zbl 1103.70304 · doi:10.1016/S0960-0779(02)00452-6
[10] Barbosa, R.S., Machado, J.A.T.: Describing function analysis of systems with impacts and backlash. Nonlinear Dyn. 29, 235–250 (2002) · Zbl 1030.70012 · doi:10.1023/A:1016514000260
[11] Ma, C., Hori, Y.: Backlash vibration suppression in torsional system based on the fractional order Q-filter of disturbance observer. In: Proceedings of 8th IEEE International Workshop on Advanced Motion Control, Kawasaki, Japan, pp. 577–582 (2004)
[12] Machado, J.A.T., Azenha, A.: Fractional-order hybrid control of robot manipulators. In: Proceedings of IEEE International Conference on Systems, Man and Cybernetics, Hammamet, Tunisia, Vol. 1, pp. 788–793 (1998)
[13] Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000) · Zbl 0998.26002
[14] Hilfer, R.; Foundations of fractional dynamics. Fractals 3, 449–556 (1995) · Zbl 0870.58041
[15] Kulish, V.V., Lage, J.L.: Applications of fractional calculus to fluid mechanics. J. Fluids Eng. 124, 803–806 (2002) · doi:10.1115/1.1478062
[16] Jacek, L.: The calculation of a normal force between multiparticle contacts using fractional operators. In: 2nd MIT Conference on Computational Fluid an Solid Mechanics, MA, arXiv: physics/0209085 (2003)
[17] Tenreiro Machado, J.A. (ed.): Special issue on fractional order calculus and its applications. Nonlinear Dyn. 29 (2002)
[18] Torvik, P.J., Bagley, R.L.: On the appearance of the fractional derivative in the behavior of real materials. Trans. ASME 51, 294–298 (1984) · Zbl 1203.74022 · doi:10.1115/1.3167615
[19] Bagley, R.L.: A theoretical basis for the application of fractional calculus to viscoelasticity. J. Rheol. 27, 201–210 (1983) · Zbl 0515.76012 · doi:10.1122/1.549724
[20] Chatterjee, A.: Statistical origins of fractional derivatives in viscoelasticity. J. Sound Vib., in press (2005)
[21] West, B.J.: Fractional calculus and memory in biophysical time series, in Fractals in Biology and Medicine. Vol. III, pp. 221–234, Birkhäuser, Basel (2003) · Zbl 1134.92308
[22] Leszczynski, J.S.: Using the fractional interaction law to model the impact dynamics of multiparticle collisions in arbitrary form. Phys. Rev. E70, 051315 (2004)
[23] Podlubny, I.: Geometric and physical interpretation of fractional integration and fractional differentiation. arXiv:math.CA/0110241 (2001) · Zbl 1042.26003
[24] Bullock, G.L.: A geometric interpretation of the Riemann-Stieltjes integral. Am. Math. Monthly 95, 448–455 (1988) · Zbl 0651.26009 · doi:10.2307/2322483
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.