×

Optimality and invexity in optimization problems in Banach algebras (spaces). (English) Zbl 1176.90578

Summary: We introduce into nonsmooth optimization theory in Banach algebras a new class of mathematical programming problems, which generalizes the notion of smooth KT-\((p,r)\)-invexity. In fact, this paper focuses on the optimality conditions for optimization problems in Banach algebras, regarding the generalized KT-\((p,r)\)-invexity notion and Kuhn-Tucker points.

MSC:

90C30 Nonlinear programming
Full Text: DOI

References:

[1] Aghezzaf, B.; Hachimi, M., Generalized invexity and duality in multiobjective programming problems, J. Global Optim., 18, 91-101 (2000) · Zbl 0970.90087
[2] Antczak, T., On \((p, r)\)-Invexity-type nonlinear programming problems, J. Math. Anal. Appl., 264, 382-397 (2001) · Zbl 1052.90072
[3] Antczak, T., \((\rho, r)\)-invex sets and functions, J. Math. Anal. Appl., 263, 355-379 (2001) · Zbl 1051.90018
[4] Antczak, T., Lipschitz \(r\)-invex functions and nonsmooth programming, Numer. Funct. Anal. Optim., 23, 265-283 (2002) · Zbl 1103.49303
[5] Antczak, T., \((p, r)\)-invexity in multiobjective programming, European J. Oper. Res., 152, 72-87 (2004) · Zbl 1053.90115
[6] Antczak, T., Minimax programming under \((p, r)\)-invexity, European J. Oper. Res., 158, 1-19 (2004) · Zbl 1061.90115
[7] Bazaraa, M. S.; Sherali, H. D.; Shetty, C. M., Nonlinear Programming Theory and Algorithms (1993), Wiley: Wiley New York · Zbl 0774.90075
[8] Clarke, F. H., Optimization and Nonsmooth Analysis (1990), SIAM · Zbl 0727.90045
[9] Clarke, F. H.; Ledyaev, Y. S.; Stern, R. J.; Wolenski, P. R., Nonsmooth Analysis and Control Theory (1998), Springer Verlag: Springer Verlag New York · Zbl 1047.49500
[10] Hanson, M. A., On sufficiency of Kuhn Tucker conditions, J. Math. Anal. Appl., 80, 545-550 (1981) · Zbl 0463.90080
[11] Jeyakumar, V.; Mond, B., On generalized convex mathematical programming, J. Austral. Math. Soc. Ser. B., 34, 43-53 (1992) · Zbl 0773.90061
[12] Mishra, S. K., Second order symmetric duality with \(F\)-convexity, European J. Oper. Res., 127, 507-518 (2000) · Zbl 0982.90063
[13] Mohan, S. R.; Neogy, S. K., On invex sets and preinvex functions, J. Math. Anal. Appl., 189, 901-908 (1995) · Zbl 0831.90097
[14] Noor, M. A., On generalized preinvex functions and monotonicities, J. Inequal. Pure Appl. Math., 5, 1-9 (2004) · Zbl 1094.26008
[15] de Oliveira, V. A.; Rojas-Medar, M. A., Continuous-time optimization problems involving invex functions, J. Math. Anal. Appl., 327, 1320-1334 (2007) · Zbl 1160.90005
[16] Osuna-Gomez, R.; Rufian-Lizana, A.; Ruiz-Canales, P., Invex functions and generalized convexity in multiobjective programming, J. Optim. Theory Appl., 98, 651-661 (1998) · Zbl 0921.90133
[17] Rueda, N. G.; Hanson, M. A., Optimality criteria in mathematical programming involving generalized invexity, J. Math. Anal. Appl., 130, 375-385 (1988) · Zbl 0647.90076
[18] Soleimani-damaneh, M., Characterization of nonsmooth quasiconvex and pseudoconvex functions, J. Math. Anal. Appl., 330, 2, 2168-2176 (2007) · Zbl 1162.49302
[19] Soleimani-damaneh, M., Multiple-objective programs in Banach spaces: Sufficiency for (proper) optimality, Nonlinear Anal., 67, 3, 958-962 (2007) · Zbl 1121.90113
[20] Soleimani-damaneh, M., Optimality for nonsmooth fractional multiple objective programming, Nonlinear Anal., 68, 10, 2873-2878 (2008) · Zbl 1144.90485
[21] Soleimani-damaneh, M., A mean value theorem in Asplund spaces, Nonlinear Anal., 68, 10, 3103-3106 (2008) · Zbl 1356.49024
[22] Soleimani-damaneh, M., A proof for Antczak’s mean value theorem in invexity analysis, Nonlinear Anal., 68, 5, 1073-1074 (2008) · Zbl 1132.26382
[23] Soleimani-damaneh, M., The gap function for optimization problems in Banach spaces, Nonlinear Anal., 69, 716-723 (2008) · Zbl 1211.90218
[24] Soleimani-damaneh, M., Infinite (semi-infinite) problems to characterize the optimality of nonlinear optimization problems, European J. Oper. Res., 188, 1, 49-56 (2008) · Zbl 1142.90032
[25] Soleimani-damaneh, M.; Jahanshahloo, G. R., Nonsmooth multiobjective optimization using limiting subdifferentials, J. Math. Anal. Appl., 328, 1, 281-286 (2007) · Zbl 1275.90089
[26] Mordukhovich, B. S., (Variational Analysis and Generalized Differentiation, I: Basic Theory. Variational Analysis and Generalized Differentiation, I: Basic Theory, Grundlehren Series (Fundamental Principles of Mathematical Sciences), vol. 330 (2006), Springer) · Zbl 1100.49002
[27] Mordukhovich, B. S., (Variational Analysis and Generalized Differentiation, II: Applications. Variational Analysis and Generalized Differentiation, II: Applications, Grundlehren Series (Fundamental Principles of Mathematical Sciences), vol. 331 (2006), Springer)
[28] Rockafellar, R. T., Convex Analysis (1970), Princeton University Press: Princeton University Press Princeton, New Jersey · Zbl 0229.90020
[29] Rockafellar, R. T.; Wets, R. J.B., Variational Analysis (1998), Springer: Springer Berlin · Zbl 0888.49001
[30] Martin, D. H., The essence of invexity, J. Optim. Theory Appl., 47, 65-76 (1985) · Zbl 0552.90077
[31] Leibowitz, G. M., Lectures on Complex Function Algebras (1970), Scott, Foresman and Company: Scott, Foresman and Company Illinois · Zbl 0219.46037
[32] M. Goemans, Semidefinite programming and combinatorial optimization, Technical report, 1998; M. Goemans, Semidefinite programming and combinatorial optimization, Technical report, 1998 · Zbl 0904.90129
[33] Lim, S.; Lee, S.; Park, S., An \(\epsilon \)-sensitivity analysis for semidefinite programming, European J. Oper. Res., 164, 417-422 (2005) · Zbl 1068.90087
[34] Overton, M.; Wolkowicz, H., Semidefinite programming, Math. Program., 77, 105-109 (1997) · Zbl 0899.90135
[35] Rudin, W., Functional Analysis (1973), McGraw-Hill: McGraw-Hill New York · Zbl 0253.46001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.