×

Arbitrary \(l\)-wave solutions of the Schrödinger equation with the Hulthén potential model. (English) Zbl 1175.81095

Summary: By using an improved new approximation scheme to deal with the centrifugal term, we investigate the bound state solutions of the Schrödinger equation with the Hulthén potential for the arbitrary angular momentum number. The bound state energy spectra and the unnormalized radial wave functions have been approximately obtained by using the supersymmetric shape invariance approach and the function analysis method. The numerical experiments show that our approximate analytical results are in better agreement with those obtained by using numerical integration approach for small values of the screening parameter \(\delta \) than the other analytical results obtained by using the conventional approximation to the centrifugal term.

MSC:

81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
Full Text: DOI

References:

[1] Hulthén L., Ark. Mat. Astron. Fys. A 28 pp 5–
[2] DOI: 10.1016/S0375-9601(01)00840-4 · Zbl 0985.81031 · doi:10.1016/S0375-9601(01)00840-4
[3] DOI: 10.1016/S0375-9601(03)00502-4 · Zbl 1059.81046 · doi:10.1016/S0375-9601(03)00502-4
[4] Lam C. S., Phys. Rev. A 4 pp 1874–
[5] DOI: 10.1103/PhysRevA.32.14 · doi:10.1103/PhysRevA.32.14
[6] Malli G., Chem. Phys. Lett. 26 pp 578–
[7] DOI: 10.1103/PhysRevLett.57.965 · doi:10.1103/PhysRevLett.57.965
[8] DOI: 10.1016/S0168-583X(97)00901-4 · doi:10.1016/S0168-583X(97)00901-4
[9] DOI: 10.1088/0305-4470/33/39/313 · Zbl 0963.81076 · doi:10.1088/0305-4470/33/39/313
[10] DOI: 10.1016/0301-0104(75)87043-1 · doi:10.1016/0301-0104(75)87043-1
[11] Olson J. A., J. Chem. Phys. 68 pp 4252–
[12] DOI: 10.1103/PhysRevA.41.4682 · doi:10.1103/PhysRevA.41.4682
[13] DOI: 10.1016/S0375-9601(00)00590-9 · Zbl 1115.81349 · doi:10.1016/S0375-9601(00)00590-9
[14] DOI: 10.1007/s10910-006-9115-8 · Zbl 1132.81352 · doi:10.1007/s10910-006-9115-8
[15] DOI: 10.1088/0305-4470/39/37/012 · Zbl 1100.81022 · doi:10.1088/0305-4470/39/37/012
[16] DOI: 10.1103/PhysRevA.14.2363 · doi:10.1103/PhysRevA.14.2363
[17] DOI: 10.1016/j.physleta.2007.04.109 · Zbl 1209.81108 · doi:10.1016/j.physleta.2007.04.109
[18] DOI: 10.1088/0031-8949/77/02/025005 · Zbl 1136.81358 · doi:10.1088/0031-8949/77/02/025005
[19] DOI: 10.1088/0031-8949/79/01/015006 · Zbl 1159.81363 · doi:10.1088/0031-8949/79/01/015006
[20] DOI: 10.1007/s10773-008-9867-y · Zbl 1169.81326 · doi:10.1007/s10773-008-9867-y
[21] DOI: 10.1088/1751-8113/40/34/010 · Zbl 1120.81024 · doi:10.1088/1751-8113/40/34/010
[22] DOI: 10.1016/j.physleta.2007.11.022 · Zbl 1220.81101 · doi:10.1016/j.physleta.2007.11.022
[23] DOI: 10.1088/1751-8113/41/6/065308 · Zbl 1133.81018 · doi:10.1088/1751-8113/41/6/065308
[24] DOI: 10.1016/j.physleta.2007.03.057 · Zbl 1209.81107 · doi:10.1016/j.physleta.2007.03.057
[25] DOI: 10.1142/S0217984908015024 · Zbl 1192.81126 · doi:10.1142/S0217984908015024
[26] DOI: 10.1016/j.physleta.2008.05.020 · Zbl 1221.81057 · doi:10.1016/j.physleta.2008.05.020
[27] DOI: 10.1142/S0217751X0803944X · Zbl 1153.81485 · doi:10.1142/S0217751X0803944X
[28] DOI: 10.1088/1751-8113/41/25/255302 · Zbl 1149.81008 · doi:10.1088/1751-8113/41/25/255302
[29] DOI: 10.1016/j.physleta.2008.05.030 · Zbl 1221.81054 · doi:10.1016/j.physleta.2008.05.030
[30] DOI: 10.1016/0370-1573(94)00080-M · doi:10.1016/0370-1573(94)00080-M
[31] Gendenshtein L. E., Sov. Phys. – JETP Lett. 38 pp 356–
[32] DOI: 10.1088/0305-4470/21/4/002 · doi:10.1088/0305-4470/21/4/002
[33] DOI: 10.1088/0305-4470/31/20/013 · Zbl 0931.34070 · doi:10.1088/0305-4470/31/20/013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.