×

Non-linear sampling recovery based on quasi-interpolant wavelet representations. (English) Zbl 1175.41025

The author investigates a problem of approximate non-linear sampling recovery of functions on the unit interval of the real axis. Section 1 contains some known problems of sampling recovery of real univariate functions defined on the unit interval of the real axis. In Section 2 a quasi-interpolant wavelet representation of the B-splines for Besov spaces is obtained. Also some quasi-norm equivalences based on the above representation are proved. Section 3 contains some remarks regarding the linear and non-linear sampling recovery methods using quasi interpolant wavelet representations.

MSC:

41A46 Approximation by arbitrary nonlinear expressions; widths and entropy
Full Text: DOI

References:

[1] Besov, O.V., Il’in, V.P., Nikol’skii, S.M.: Integral Representations of Functions and Embedding Theorems. V.H. Winston, Washington, D.C (1978)
[2] Butzer, P.L., Schmidt, M.: Central factorial numbers and their role in finite difference calculus and approximation. In: Szabados, J., Tandory, K. (eds.) Approximation Theory. CMSB, vol. 58. NH, pp. 127–150 (1990) · Zbl 0784.41028
[3] Butzer, P.L., Schmidt, M., Stark, E.L., Vogt, L.: Central factorial numbers, their main properties and some applications. Numer. Funct. Anal. Optim. 10, 419–488 (1989) · Zbl 0659.10012 · doi:10.1080/01630568908816313
[4] Chui, C.K.: An Introduction to Wavelets. Academic, New York (1992) · Zbl 0925.42016
[5] Chui, C.K., Diamond, H.: A natural formulation of quasi-interpolation by multivariate splines. Proc. Amer. Math. Soc. 99, 643–646 (1987) · Zbl 0656.41005 · doi:10.1090/S0002-9939-1987-0877032-6
[6] de Boor, C., Fix, G.J.: Spline approximation by quasiinterpolants. J. Approx. Theory 8, 19–45 (1973) · Zbl 0279.41008 · doi:10.1016/0021-9045(73)90029-4
[7] Dahlke, S., Novak, E., Sickel, W.: Optimal approximation of elliptic problems by linear and nonlinear mappings I. Complexity 22, 29–49 (2006) · Zbl 1092.65044 · doi:10.1016/j.jco.2005.06.005
[8] Dahlke, S., Novak, E., Sickel, W.: Optimal approximation of elliptic problems by linear and nonlinear mappings II. Complexity 22, 549–603 (2006) · Zbl 1102.65061 · doi:10.1016/j.jco.2006.04.001
[9] de Boor, C., Höllig, K., Riemenschneider, S.: Box Spline. Springer, Berlin (1993)
[10] DeVore, R.A.: Nonlinear approximation. Acta Numer. 7, 51–150 (1998) · Zbl 0931.65007 · doi:10.1017/S0962492900002816
[11] DeVore, R.A., Lorentz, G.G.: Constructive Approximation. Springer, New York (1993) · Zbl 0797.41016
[12] DeVore, R.A., Popov, V.A.: Interpolation of Besov spaces. Trans. Amer. Math. Soc. 305, 397–413 (1988) · Zbl 0646.46030 · doi:10.1090/S0002-9947-1988-0920166-3
[13] Dung, D.: On interpolation recovery for periodic functions. In: Koshi, S. (ed.) Functional Analysis and Related Topics, pp. 224–233. World Scientific, Singapore (1991) · Zbl 0826.42006
[14] Dung, D.: On nonlinear n-widths and n-term approximation. Vietnam Math. J. 26, 165–176 (1998) · Zbl 0921.46027
[15] Dung, D.: Continuous algorithms in n-term approximation and non-linear n-widths. J. Approx. Theory 102, 217–242 (2000) · Zbl 0951.41011 · doi:10.1006/jath.1999.3399
[16] Dung, D.: Using quasi-interpolant wavelet representations for non-linear sampling recovery. Vietnam Math. J. 35, 331–338 (2007) · Zbl 1255.62024
[17] Kydryatsev, S.N.: The best accuracy of reconstruction of finitely smooth functions from their values at a given number of points. Izv. Math. 62, 19–53 (1998) · Zbl 0944.41013 · doi:10.1070/IM1998v062n01ABEH000182
[18] Nikol’skii, S.: Approximation of Functions of Several Variables and Embedding Theorems. Springer, Berlin (1975)
[19] Novak, E.: Deterministic and Stochastic Error Bounds in Numerical Analysis. Lecture Notes in Mathematics, vol. 1349. Springer, Berlin (1988) · Zbl 0656.65047
[20] Novak, E., Triebel, H.: Function spaces in Lipschitz domains and optimal rates of convergence for sampling. Constr. Approx. 23, 325–350 (2006) · Zbl 1106.41014 · doi:10.1007/s00365-005-0612-y
[21] Sablonnière, P.: Recent progress on univariate and multivariate polynomial and spline quasi-interpolants. In: de Bruin, M.G., Mache, D.H., Szabados, J. (eds.) Trends and applications in constructive approximation. Int. Ser. Numer. Math. 151, 229–245 (2005) · Zbl 1074.41002
[22] Schoenberg, I.J.: Cardinal spline interpolation. CBMS-NSF Regional Conferences Series in Applied Mathematics, vol. 12. SIAM, Philadelphia (1973) · Zbl 0264.41003
[23] Temlyakov, V.: Approximation of Periodic Functions. Nova Science, New York (1993) · Zbl 0899.41001
[24] Temlyakov, V.: Nonlinear methods of approximation. Fund. Comput. Math. 3, 33–107 (2003) · Zbl 1039.41012 · doi:10.1007/s102080010029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.