×

Shape Hessian for generalized Oseen flow by differentiability of a minimax: A Lagrangian approach. (English) Zbl 1174.76008

Summary: The goal of this paper is to compute the shape Hessian for a generalized Oseen problem with nonhomogeneous Dirichlet boundary condition by the velocity method. The incompressibility will be treated by penalty approach. The structure of the shape gradient and shape Hessian with respect to the shape of the variable domain for a given cost functional are established by an application of the Lagrangian method with function space embedding technique.

MSC:

76D55 Flow control and optimization for incompressible viscous fluids
49Q12 Sensitivity analysis for optimization problems on manifolds
49K35 Optimality conditions for minimax problems
76D07 Stokes and related (Oseen, etc.) flows

References:

[1] R. A. Adams: Sobolev Spaces. Academic Press, London, 1975.
[2] J. Céa: Lectures on Optimization: Theory and Algorithms. Springer-Verlag, 1978.
[3] J. Céa: Problems of shape optimal design. ”Optimization of Distributed Parameter Structures”, Vol. II (E. J. Haug and J. Céa, eds.). Sijthoff and Noordhoff, Alphen aan denRijn, Netherlands, 1981, pp. 1005–1048.
[4] R. Correa and A. Seeger: Directional derivative of a minmax function. Nonlinear Analysis, Theory Methods and Applications 9 (1985), 13–22. · Zbl 0556.49007 · doi:10.1016/0362-546X(85)90049-5
[5] M.C. Delfour, G. Payre and J.-P. Zolésio: An optimal triangulation for second order elliptic problems. Computer Methods in Applied Mechanics and Engineering 50 (1985), 231–261. · Zbl 0554.65077 · doi:10.1016/0045-7825(85)90095-7
[6] M. C. Delfour and J.-P. Zolésio: Shape sensitivity analysis via min max differentiability. SIAM J. Control and Optimization 26 (1988), 834–862. · Zbl 0654.49010 · doi:10.1137/0326048
[7] M. C. Delfour and J.-P. Zolésio: Computation of the shape Hessian by a Lagrangian method. IFAC, Control of Distributed Parameter Systems. Perpignan, France, 1989, pp. 215–220.
[8] M. C. Delfour and J.-P. Zolésio: Shape Hessian by the velocity method: a Lagrangian approach. Lect. Notes. Cont. Inf. Sci, 147, Springer-Verlag, 1990, pp. 255–279. · Zbl 0784.93048 · doi:10.1007/BFb0005159
[9] M. C. Delfour and J.-P. Zolésio: Tangential calculus and shape derivative in Shape Optimization and Optimal Design (Cambridge, 1999), Dekker, New York. 2001, pp. 37–60.
[10] M.C. Delfour and J.-P. Zolésio: Shapes and Geometries: Analysis, Differential Calculus, and Optimization. Advance in Design and Control, SIAM (2002).
[11] I. Ekeland and R. Temam: Convex Analysis and Variational Problems. Series Classics in Applied Mathematics, SIAM, Philadelphia, 1999. · Zbl 0281.49001
[12] N. Fujii: Domain optimization problems with a boundary value problem as a constraint. ”Control of Distributed Parameter Systems” 1986, Pergamon Press, Oxford, New York, 1986, pp. 5–9.
[13] D. Gilbarg and N. S. Trudinger: Elliptic Partial Differential Equations of Second Order. Springer, Berlin, 1983. · Zbl 0562.35001
[14] J. Hadamard: Mémoire sur le probl‘eme d’analyse relatif à l’équilibre des plaques élastiques encastrées. Mém. Sav. étrang. (2)33, Nr. 4, 128 S (1908).
[15] J. Haslinger and R. A. E. Mäkinen: Introduction to Shape Optimization: Theory, Approximation, and Computation. SIAM (2003).
[16] J.-C. Nédélec: Acoustic and Electromagnetic Equations. Integral representations for harmonic problems. Springer-Verlag, Berlin Heidelberg New York, 2001.
[17] O. Pironneau: Optimal Shape Design for Elliptic systems. Springer, Berlin, 1984. · Zbl 0534.49001
[18] J. Simon: Differentiation with respect to the domain in boundary value problems. Numer. Funct. Anal. Optim. 2 (1980), 649–687. · Zbl 0471.35077 · doi:10.1080/01630563.1980.10120631
[19] J. Simon: Second variations for domain optimization problems. ”Control of Distributed Parameter Systems”, Birkhauser Verlag, 1988.
[20] R. Temam: Navier-Stokes Equations: Theory and Numerical Analysis. Providence, RI: American Mathematical Society (AMS), 2001. · Zbl 0981.35001
[21] J.-P. Zolésio: Identification de domaines par déformation, Thèse de doctorat d’é tat, Université de Nice, France. 1979.
[22] J. Sokolowski and J.-P. Zolésio: Introduction to Shape Optimization: Shape Sensitivity Analysis. Springer-Verlag, Berlin, 1992.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.