×

The Kato-type spectrum and local spectral theory. (English) Zbl 1174.47001

Summary: Let \(T\in\mathcal{L}(X)\) be a bounded operator on a complex Banach space \(X\). If \(V\) is an open subset of the complex plane such that \(\lambda -T\) is of Kato-type for each \(\lambda\in V\), then the induced mapping \(f(z)\mapsto (z-T)f(z)\) has closed range in the Fréchet space of analytic \(X\)-valued functions on \(V\). Since semi-Fredholm operators are of Kato-type, this generalizes a result of J.Eschmeier [Proc.Edinb.Math.Soc., II.Ser.43, No.3, 511–528 (2000; Zbl 0980.47004)] on Fredholm operators and leads to a sharper estimate of Nagy’s spectral residuum of \(T\). Our proof is elementary; in particular, we avoid the sheaf model of J.Eschmeier [loc.cit.]and M.Putinar [Integral Equations Oper.Theory 15, No.6, 1047–1052 (1992; Zbl 0773.47011)] and the theory of coherent analytic sheaves.

MSC:

47A11 Local spectral properties of linear operators
47A53 (Semi-) Fredholm operators; index theories

References:

[1] P. Aiena: Fredholm and Local Spectral Theory, with Applications to Multipliers. Kluwer Academic Publ., Dordrecht, 2004. · Zbl 1077.47001
[2] P. Aiena and F. Villafañe: Components of resolvent sets and local spectral theory. Proceedings of the Fourth Conference on Function Spaces at Edwardsville, Contemp. Math. 328, Amer. Math. Soc., Providence, RI, 2003, pp. 1–14. · Zbl 1057.47006
[3] E. Albrecht and J. Eschmeier: Analytic functional models and local spectral theory. Proc. London Math. Soc. 75 (1997), 323–348. · Zbl 0881.47007 · doi:10.1112/S0024611597000373
[4] J. Eschmeier: Analytische Dualität und Tensorprodukte in der mehrdimensionalen Spektraltheorie. Habilitationsschrift, Schriftenreihe des Mathematischen Instituts der Universität Münster, 2. Serie, Heft 42, Münster, 1987. · Zbl 0619.47030
[5] J. Eschmeier: On the essential spectrum of Banach space operators. Proc. Edinburgh Math. Soc. 43 (2000), 511–528. · Zbl 0980.47004 · doi:10.1017/S0013091500021167
[6] D. Herrero: On the essential spectra of quasisimilar operators. Can. J. Math. 40 (1988), 1436–1457. · Zbl 0723.47015 · doi:10.4153/CJM-1988-066-x
[7] T. Kato: Perturbation theory for nullity, deficiency and other quantities of linear operators. J. Anal. Math. 6 (1958), 261–322. · Zbl 0090.09003 · doi:10.1007/BF02790238
[8] J.-P. Labrousse: Les opérateurs quasi Fredholm: une généralisation des opé rateurs semi Fredholm. Rend. Circ. Mat. Palermo 29 (1980), 161–258. · Zbl 0474.47008 · doi:10.1007/BF02849344
[9] K. B. Laursen and M. M. Neumann: An Introduction to Local Spectral Theory. Clarendon Press, Oxford, 2000. · Zbl 0957.47004
[10] T. L. Miller and V. G. Miller: Equality of essential spectra of quasisimilar operators with property ({\(\delta\)}). Glasgow Math. J. 38 (1996), 21–28. · Zbl 0849.47010 · doi:10.1017/S0017089500031219
[11] T. L. Miller, V. G. Miller and M. M. Neumann: Localization in the spectral theory of operators on Banach spaces. Proceedings of the Fourth Conference on Function Spaces at Edwardsville, Contemp. Math. 328, Amer. Math. Soc., Providence, RI, 2003, pp. 247–262. · Zbl 1060.47005
[12] B. Nagy: On S-decomposable operators. J. Operator Theory 2 (1979), 277–286. · Zbl 0436.47024
[13] M. Putinar: Quasi-similarity of tuples with Bishop’s property ({\(\beta\)}). Int. Eq. and Oper. Theory 15 (1992), 1047–1052. · Zbl 0773.47011 · doi:10.1007/BF01203128
[14] F.-H. Vasilescu: Analytic Functional Calculus and Spectral Decompositions. Editura Academiei and D. Reidel Publishing Company, Bucharest and Dordrecht, 1982.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.