×

Interior curvature bounds for a class of curvature equations. (English) Zbl 1174.35378

In the present study the authors derive interior curvature bounds for admissible solutions of a class of curvature equations subject to affine Dirichlet data, generalizing the well-known interior second derivative bound for equations of Monge-Ampère type. In addition, in the case where convexity of the solution is the natural ellipticity assumption, the authors prove an interior curvature bound for convex solutions subject to \(C^{1,1}\) data. Moreover, they use the curvature bound to extend and to improve various existence results for the Dirichlet and Plateau problems.

MSC:

35J60 Nonlinear elliptic equations
35B45 A priori estimates in context of PDEs
53C21 Methods of global Riemannian geometry, including PDE methods; curvature restrictions
Full Text: DOI

References:

[1] A. D. Aleksandrov, Uniqueness theorems for surfaces in the large, II (in Russian), Vestnik Leningrad. Univ. 12 , no. 7 (1957), 15-44.; English translation in Amer. Math. Soc. Transl. 2 21 (1962), 354-388. Mathematical Reviews (MathSciNet):
[2] B. Andrews, Contraction of convex hypersurfaces in Euclidean space , Calc. Var. Partial Differential Equations 2 (1994), 151-171. · Zbl 0805.35048 · doi:10.1007/BF01191340
[3] L. A. Caffarelli, Interior \(W^2,p\) estimates for solutions of the Monge-Ampère equation , Ann. of Math. (2) 131 (1990), 135-150. JSTOR: · Zbl 0704.35044 · doi:10.2307/1971510
[4] L. Caffarelli, L. Nirenberg, and J. Spruck, Nonlinear second-order elliptic equations, V: The Dirichlet problem for Weingarten hypersurfaces , Comm. Pure Appl. Math. 41 (1988), 47-70. · Zbl 0672.35028 · doi:10.1002/cpa.3160410105
[5] -. -. -. -., “On a form of Bernstein’s theorem” in Analyse mathématique et applications , Gauthier-Villars, Paris, 1988, 55-66.
[6] S.-Y. Cheng and S.-T. Yau, On the regularity of the Monge-Ampère equation \(\det\partial^2u/\partial x_i\partial x_j = F(x,u)\) , Comm. Pure Appl. Math. 30 (1977), 41-68. · Zbl 0347.35019 · doi:10.1002/cpa.3160300104
[7] K.-S. Chou and X.-J. Wang, A variational theory of the Hessian equation , Comm. Pure Appl. Math. 54 (2001), 1029-1064. · Zbl 1035.35037 · doi:10.1002/cpa.1016
[8] C. Gerhardt, Closed Weingarten hypersurfaces in Riemannian manifolds , J. Differential Geom. 43 (1996), 612-641. · Zbl 0861.53058
[9] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order , 2nd ed., Grundlehren Math. Wiss. 224 , Springer, Berlin, 1983. · Zbl 0562.35001
[10] B. Guan and J. Spruck, Boundary-value problems on \(S^n\) for surfaces of constant Gauss curvature , Ann. of Math. (2) 138 (1993), 601-624. JSTOR: · Zbl 0840.53046 · doi:10.2307/2946558
[11] -. -. -. -., The existence of hypersurfaces of constant Gauss curvature with prescribed boundary , J. Differential Geom. 62 (2002), 259-287. · Zbl 1070.58013
[12] D. Hoffman, H. Rosenberg, and J. Spruck, Boundary value problems for surfaces of constant Gauss curvature , Comm. Pure Appl. Math. 45 (1992), 1051-1062. · Zbl 0789.53002 · doi:10.1002/cpa.3160450807
[13] N. M. Ivochkina [Ivočkina], Construction of a priori estimates for convex solutions of the Monge-Ampère equation by the integral method , Ukranian Math. J. 30 , no. 1 (1978), 30, 32-38. · Zbl 0406.35008 · doi:10.1007/BF01130627
[14] -. -. -. -., Solution of the Dirichlet problem for equations of \(m\)th order curvature (in Russian), Mat. Sb. 180 (1989), 867-887.; English translation in Math. USSR-Sb. 67 (1990), 317-339. · Zbl 0695.35074
[15] -. -. -. -., The Dirichlet problem for the curvature equation of order \(m\) (in Russian), Algebra i Analiz 2 , no. 3 (1990), 192-217.; English translation in Leningrad Math. J. 2 (1991), 631-654. · Zbl 0716.35027
[16] N. M. Ivochkina, M. Lin, and N. S. Trudinger, “The Dirichlet problem for the prescribed curvature quotient equations with general boundary values” in Geometric Analysis and the Calculus of Variations , Internat. Press, Cambridge, Mass., 1996, 125-141. · Zbl 0938.35060
[17] N. M. Ivochkina and F. Tomi, Locally convex hypersurfaces of prescribed curvature and boundary , Calc. Var. Partial Differential Equations 7 (1998), 293-314. · Zbl 0951.53004 · doi:10.1007/s005260050110
[18] N. J. Korevaar, A priori interior gradient bounds for solutions to elliptic Weingarten equations , Ann. Inst. H. Poincaré Anal. Non Linéaire 4 (1987), 405-421. · Zbl 0644.35041
[19] Y.-Y. Li, Interior gradient estimates for solutions of certain fully nonlinear elliptic equations , J. Differential Equations 90 (1991), 172-185. · Zbl 0724.35020 · doi:10.1016/0022-0396(91)90166-7
[20] M. Lin and N. S. Trudinger, The Dirichlet problem for the prescribed curvature quotient equations , Topol. Methods Nonlinear Anal. 3 (1994), 307-323. · Zbl 0812.58016
[21] B. Nelli, On the structure of positive scalar curvature type graphs , Ital. J. Pure Appl. Math. 10 (2001), 169-179. · Zbl 1121.53317
[22] B. Nelli and B. Semmler, O n hypersurfaces embedded in Euclidean space with positive constant \(H_r\) curvature , Indiana Univ. Math. J. 50 (2001), 989-1002. · Zbl 1036.53005 · doi:10.1512/iumj.2001.50.1898
[23] A. V. Pogorelov, The Minkowski Multidimensional Problem , Scripta Ser. Math., Wiley, New York, 1978. · Zbl 0387.53023
[24] H. Rosenberg, Hypersurfaces of constant curvature in space forms , Bull. Sci. Math. 117 (1993), 211-239. · Zbl 0787.53046
[25] J. Spruck, “Fully nonlinear elliptic equations and applications to geometry” in Proceedings of the International Congress of Mathematicians, Vols. 1, 2 (Zürich, 1994) , Birkhäuser, Basel, 1995, 1145-1152. · Zbl 0851.35036
[26] N. S. Trudinger, A priori bounds and necessary conditions for solvability of prescribed curvature equations , Manuscripta Math. 67 (1990), 99-112. · Zbl 0703.35070 · doi:10.1007/BF02568424
[27] -. -. -. -., The Dirichlet problem for the prescribed curvature equations , Arch. Rational Mech. Anal. 111 (1990), 153-179. · Zbl 0721.35018 · doi:10.1007/BF00375406
[28] -. -. -. -., Maximum principles for curvature quotient equations , J. Math. Sci. Univ. Tokyo 1 (1994), 551-565. · Zbl 0828.35020
[29] —-, private communication, 1998. · Zbl 1015.91507
[30] N. S. Trudinger and J. I. E. Urbas, The Dirichlet problem for the equation of prescribed Gauss curvature , Bull. Austral. Math. Soc. 28 (1983), 217-231. · Zbl 0524.35047 · doi:10.1017/S000497270002089X
[31] -. -. -. -., On second derivative estimates for equations of Monge-Ampère type , Bull. Austral. Math. Soc. 30 (1984), 321-334. · Zbl 0557.35054 · doi:10.1017/S0004972700002069
[32] N. S. Trudinger and X.-J. Wang, On locally convex hypersurfaces with boundary , J. Reine Angew. Math. 551 (2002), 11-32. · Zbl 1020.53002 · doi:10.1515/crll.2002.078
[33] J. I. E. Urbas, Regularity of generalized solutions of Monge-Ampère equations , Math. Z. 197 (1988), 365-393. · Zbl 0617.35017 · doi:10.1007/BF01418336
[34] -. -. -. -., On the existence of nonclassical solutions for two classes of fully nonlinear elliptic equations , Indiana Univ. Math. J. 39 (1990), 355-382. · Zbl 0724.35028 · doi:10.1512/iumj.1990.39.39020
[35] -. -. -. -., An interior curvature bound for hypersurfaces of prescribed \(k\)-th mean curvature , J. Reine Angew. Math. 519 (2000), 41-57. · Zbl 0959.53031 · doi:10.1515/crll.2000.016
[36] -. -. -. -., Monotonicity formulae and curvature equations , J. Reine Angew. Math. 557 (2003), 199-218. · Zbl 1075.53034 · doi:10.1515/crll.2003.031
[37] X.-J. Wang, Interior gradient estimates for mean curvature equations , Math. Z. 228 (1998), 73-81. · Zbl 0909.35022 · doi:10.1007/PL00004604
[38] Y. Yu, The Index Theorem and the Heat Equation Method , Nankai Tracts Math. 2 , World Sci., Singapore, 2001. · Zbl 0986.58013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.