×

Stability and bifurcation for a flexible beam under a large linear motion with a combination parametric resonance. (English) Zbl 1173.74018

Summary: Stability and bifurcation behaviors for a model of a flexible beam undergoing a large linear motion with a combination parametric resonance are studied by means of a combination of analytical and numerical methods. Three types of critical points for the bifurcation equations near the combination resonance in the presence of internal resonance are considered, which are characterized by a double zero and two negative eigenvalues, by a double zero and a pair of purely imaginary eigenvalues, and by two pairs of purely imaginary eigenvalues in nonresonant case, respectively. The stability regions of the initial equilibrium solution and the critical bifurcation curves are obtained in terms of system parameters. Especially, for the third case, explicit expressions of critical bifurcation curves leading to incipient and secondary bifurcations are obtained with the aid of normal form theory. Bifurcations leading to Hopf bifurcations and two-dimensional tori and their stability conditions are also investigated. Some new dynamical behaviors are presented for this system. A time-integration scheme is used to find numerical solutions for these bifurcations, and numerical results agree with analytical ones.

MSC:

74H55 Stability of dynamical problems in solid mechanics
74H60 Dynamical bifurcation of solutions to dynamical problems in solid mechanics
74H45 Vibrations in dynamical problems in solid mechanics
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
Full Text: DOI

References:

[1] Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1979)
[2] Mosekilde, E.: Topics in Nonlinear Dynamics. World Scientific, Singapore (1996) · Zbl 0914.58013
[3] Thomson, J.M.T., Stewart, H.B.: Nonlinear Dynamics and Chaos. Wiley, New York (1986)
[4] Knudsen, C., Slivsgaard, E., Rose, M., True, H., Feldberg, R.: Dynamics of a model of a railroad wheelset. Nonlinear Dyn. 6, 215–236 (1994) · doi:10.1007/BF00044986
[5] Sorensen, C.B., Mosekilde, E., Granazy, P.: Nonlinear dynamics of a thrust vectored aircraft. Phys. Scr. 67, 176–183 (1996) · doi:10.1088/0031-8949/1996/T67/034
[6] Thomson, J.M.T.: Complex dynamics of compliant off-shore structures. Proc. R. Soc. Lond. A 387, 407–427 (1983) · doi:10.1098/rspa.1983.0067
[7] Shy, A.: Prediction of jump phenomena in roll-coupled maneuvers of airplanes. J. Aircr. 14, 375–382 (1977) · doi:10.2514/3.58787
[8] Malhotra, N., Namachivaya, N.S.: Chaotic motion of shallow arch structures under 1:1 internal resonance. J. Eng. Mech. 123, 620–627 (1997) · doi:10.1061/(ASCE)0733-9399(1997)123:6(620)
[9] Namachchivaya, N.S., Van Roessel, H.J.: Unfolding of degenerate Hopf bifurcation for supersonic flow past a pitching wedge. J. Guid. Control Dyn. 9, 413–418 (1986) · Zbl 0602.76072 · doi:10.2514/3.20126
[10] Namachchivaya, N.S., Van Roessel, H.J.: Unfolding of double-zero eigenvalue bifurcations for supersonic flow past a pitching wedge. J. Guid. Control Dyn. 13, 343–347 (1990) · doi:10.2514/3.20555
[11] Kane, T.R., Ryan, R.R., Banerjee, A.K.: Dynamics of a cantilever beam attached to a moving base. J. Guid. Control Dyn. 10(2), 139–151 (1987) · doi:10.2514/3.20195
[12] Hyun, S.H., Yoo, H.H.: Dynamic modeling and stability analysis of axially oscillating cantilever beams. J. Sound Vib. 228(3), 543–558 (1999) · doi:10.1006/jsvi.1999.2427
[13] Chin, C.M., Nayfeh, A.H.: Three-to-one internal resonances in hinged-clamped beams. Nonlinear Dyn. 12(2), 129–154 (1997) · Zbl 0885.73030 · doi:10.1023/A:1008229503164
[14] Chin, C.M., Nayfeh, A.H.: Three-to-one internal resonances in parametrically excited hinged-clamped beams. Nonlinear Dyn. 20(2), 131–158 (1999) · Zbl 1006.74049 · doi:10.1023/A:1008310419911
[15] Feng, Z.H., Hu, H.Y.: Dynamic stability of a slender beam with internal resonance under a large linear motion. Acta Mech. Sin. 34(3), 389–399 (2002) (in Chinese)
[16] Feng, Z.H., Hu, H.Y.: Principal parametric and three-to-one internal resonances of flexible beams undergoing a large linear motion. Acta Mech. Sin. 19(4), 355–364 (2003) · doi:10.1007/BF02487813
[17] Feng, Z.H., Hu, H.Y.: Largest Lyapunov exponent and almost certain stability analysis of slender beams under a large linear motion of basement subject to narrowband parametric excitation. J. Sound Vib. 257(4), 733–752 (2002) · doi:10.1006/jsvi.2002.5041
[18] Yu, P.: Computation of norm forms via a perturbation technique. J. Sound Vib. 211, 19–38 (1998) · Zbl 1235.34126 · doi:10.1006/jsvi.1997.1347
[19] Yu, P.: Symbolic computation of normal forms for resonant double Hopf bifurcations using a perturbation technique. J. Sound Vib. 247, 615–632 (2001) · Zbl 1237.70085 · doi:10.1006/jsvi.2001.3732
[20] Yu, P.: Analysis on double Hopf bifurcation using computer algebra with the aid of multiple scales. Nonlinear Dyn. 27, 19–53 (2002) · Zbl 0994.65140 · doi:10.1023/A:1017993026651
[21] Yu, P., Bi, Q.: Analysis of non-linear dynamics and bifurcations of a double pendulum. J. Sound Vib. 217, 691–736 (1998) · Zbl 1236.70031 · doi:10.1006/jsvi.1998.1781
[22] Yu, P., Huseyin, K.: Static and dynamic bifurcations associated with a double-zero eigenvalue. Dyn. Stab. Syst. 1, 1–42 (1986) · Zbl 0647.34036
[23] Yu, P., Zhang, W., Bi, Q.: Vibration analysis on a thin plate with the aid of computation of normal forms. Int. J. Non-linear Mech. 36, 597–627 (2001) · Zbl 1341.74115 · doi:10.1016/S0020-7462(00)00023-8
[24] Zhou, L.Q., Chen, F.Q.: Stability and bifurcation analysis for a model of a nonlinear coupled pitch-roll ship. Math. Comput. Simul. (in press) · Zbl 1158.70010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.