×

Lawvere completeness in topology. (English) Zbl 1173.18001

Authors’ abstract: It is known since 1973 that Lawvere’s notion of Cauchy-complete enriched category is meaningful for metric spaces: it captures exactly Cauchy-complete metric spaces. In this paper, we introduce the corresponding notion of Lawvere completeness for \((\mathbb{T},{\mathcal V})\)-categories and show that it has an interesting meaning for topological spaces and quasi-uniform spaces: for the former ones it means weak sobriety while for the latter it means Cauchy completeness. Further, we show that \({\mathcal V}\) has a canonical \((\mathbb{T},{\mathcal V})\)-category structure which plays a key role: it is Lawvere-complete under reasonable conditions on the setting; this structure permits us to define a Yoneda embedding in the realm of \((\mathbb{T},{\mathcal V})\)-categories.

MSC:

18A05 Definitions and generalizations in theory of categories
18D20 Enriched categories (over closed or monoidal categories)

References:

[1] Barr, M.: Relational algebras. Lecture Notes in Math. 137, 39–55 (1970) · Zbl 0204.33202 · doi:10.1007/BFb0060439
[2] Bénabou, J.: Distributors at work. Lecture notes written by Thomas Streicher. www.mathematik.tu-darmstadt.de/treicher/
[3] Betti, R., Carboni, A., Street, R., Walters, R.: Variation through enrichment. J. Pure Appl. Algebra 29, 109–127 (1983) · Zbl 0571.18004 · doi:10.1016/0022-4049(83)90100-7
[4] Bonsangue, M.M., van Breugel, F., Rutten, J.J.M.M.: Generalized metric spaces: completion, topology, and powerdomains via the Yoneda embedding. Theoret. Comput. Sci. 193, 1–51 (1998) · Zbl 0997.54042 · doi:10.1016/S0304-3975(97)00042-X
[5] Borceux, F.: Handbook of Categorical Algebra. Vol. 1. Cambridge University Press, Cambridge (1994) · Zbl 0843.18001
[6] Borceux, F., Dejean, D.: Cauchy completion in category theory. Cahiers Topologie Géom. Differentielle Catég. 27, 133–146 (1986) · Zbl 0595.18001
[7] Clementino, M.M., Hofmann, D.: Triquotient maps via ultrafilter convergence. Proc. Amer. Math. Soc. 130, 3423–3431 (2002) · Zbl 1008.54011 · doi:10.1090/S0002-9939-02-06472-9
[8] Clementino, M.M., Hofmann, D.: On limit stability of special classes of continuous maps. Topology Appl. 125, 471–488 (2002) · Zbl 1020.54011 · doi:10.1016/S0166-8641(01)00293-0
[9] Clementino, M.M., Hofmann, D.: Topological features of lax algebras. Appl. Categ. Structures 11, 267–286 (2003) · doi:10.1023/A:1024274315778
[10] Clementino, M.M., Hofmann, D.: On extensions of lax monads. Theory Appl. Categ. 13, 41–60 (2004) · Zbl 1085.18006
[11] Clementino, M.M., Hofmann, D.: Effective descent morphisms in categories of lax algebras. Appl. Categ. Structures 12, 413–425 (2004) · Zbl 1078.18008 · doi:10.1023/B:APCS.0000049310.37773.fa
[12] Clementino, M.M., Hofmann, D.: Exponentiation in V-categories. Topology Appl. 153, 3113–3128 (2006) · Zbl 1155.18007 · doi:10.1016/j.topol.2005.01.038
[13] Clementino, M.M., Hofmann, D.: Relative injectivity as cocompleteness for a class of distributors. Preprint 08-34, Department of Mathematics, University of Coimbra (2008) · Zbl 1161.18300
[14] Clementino, M.M., Hofmann, D., Tholen, W.: The convergence approach to exponentiable maps. Portugal Math. 60, 139–160 (2003) · Zbl 1078.54011
[15] Clementino, M.M., Hofmann, D., Tholen, W.: Exponentiability in categories of lax algebras. Theory Appl. Categ. 11, 337–352 (2003) · Zbl 1050.18006 · doi:10.1023/A:1024458931031
[16] Clementino, M.M., Hofmann, D., Tholen, W.: One setting for all: metric, topology, uniformity, approach structure. Appl. Categ. Structures 12, 127–154 (2004) · Zbl 1051.18005 · doi:10.1023/B:APCS.0000018144.87456.10
[17] Clementino, M.M., Tholen, W.: Metric, topology and multicategory–a common approach. J. Pure Appl. Algebra 179, 13–47 (2003) · Zbl 1015.18004 · doi:10.1016/S0022-4049(02)00246-3
[18] Eilenberg, S., Kelly, G.M.: Closed categories. In: Proc. Conf. Categorical Algebra (La Jolla, Calif., 1965), pp. 421–562. Springer, New York (1966) · Zbl 0192.10604
[19] Fletcher, P., Lindgren, W.: A construction of the pair-completion of a quasi-uniform space. Canad. Math. Bull. 21, 53–59 (1978) · Zbl 0393.54019 · doi:10.4153/CMB-1978-009-2
[20] Fletcher, P., Lindgren, W.: Quasi-uniform Spaces. Lecture Notes in Pure and Applied Maths. Marcel Dekker, New York (1982)
[21] Freyd, P., Scedrov, A.: Categories, Allegories. vol. 39 of North-Holland Mathematical Library. North-Holland, Amsterdam (1990) · Zbl 0698.18002
[22] Hofmann, D.: An algebraic description of regular epimorphisms in topology. J. Pure Appl. Algebra 199, 71–86 (2005) · Zbl 1072.18002 · doi:10.1016/j.jpaa.2004.12.039
[23] Hofmann, D.: Exponentiation for unitary structures. Topology Appl. 153, 3180–3202 (2006) · Zbl 1105.18002 · doi:10.1016/j.topol.2005.01.037
[24] Hofmann, D.: Topological theories and closed objects. Adv. Math. 215, 789–824 (2007) · Zbl 1127.18001 · doi:10.1016/j.aim.2007.04.013
[25] Hofmann, D.: Injective spaces via adjunction, Technical report. University of Aveiro. arXiv:math.CT/0804.0326. · Zbl 1228.18001
[26] Hofmann, D., Tholen, W.: Lawvere completion and separation via closure, Technical report, University of Aveiro 2008. arXiv:math.CT70801.0199 · Zbl 1207.18006
[27] Kelly, G.M.: Basic Concepts of Enriched Category Theory, vol. 64 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge (1982) · Zbl 0478.18005
[28] Lawvere, F.W.: Metric spaces, generalized logic, and closed categories. Rend. Sem. Mat. Fis. Milano 43, 135–166 (1973); Reprints in Theory and Applications of Categories 1, 1–37 (2002) · Zbl 0335.18006 · doi:10.1007/BF02924844
[29] Lowen, R.: Approach Spaces, Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York (1997)
[30] Mahmoudi, M., Schubert, C., Tholen, W.: Universality of coproducts in categories of lax algebras. Appl. Categ. Structures 14, 243–249 (2006) · Zbl 1103.18007 · doi:10.1007/s10485-006-9019-6
[31] Manes, E.: Taut monads and T0-spaces. Theoret. Comput. Sci. 275, 79–109 (2002) · Zbl 1033.18001 · doi:10.1016/S0304-3975(00)00415-1
[32] Moerdijk, I.: Monads on tensor categories. J. Pure Appl. Algebra 168(2–3), 189–208 (2002) · Zbl 0996.18005 · doi:10.1016/S0022-4049(01)00096-2
[33] Van Olmen, C.: A study of the interaction between frame theory and approach theory. PhD thesis, University of Antwerp (2005)
[34] Seal, G.J.: Canonical and op-canonical lax algebras. Theory Appl. Categ. 14, 221–243 (2005) · Zbl 1088.18006
[35] Tholen, W.: Lectures on Lax-Algebraic Methods in General Topology, Lecture 1: \(\mathsf{V}\) -categories, \(\mathsf{V}\) -modules, Lawvere completeness, Haute-Bodeux (2007), http://www.math.yorku.ca/holen/HB07Tholen1.pdf
[36] Wood, R.J.: Abstract proarrows. I. Cahiers Topologie Géom. Differentielle Catég. 23(3), 279–290 (1982) · Zbl 0497.18012
[37] Wood, R.J.: Ordered sets via adjunctions. In: Categorical Foundations. Encyclopedia Math. Appl., vol. 97, pp. 5–47. Cambridge University Press, Cambridge (2004) · Zbl 1044.06001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.