×

Application of FFT-based algorithms for large-scale universal kriging problems. (English) Zbl 1172.86002

Summary: Looking at kriging problems with huge numbers of estimation points and measurements, computational power and storage capacities often pose heavy limitations to the maximum manageable problem size. In the past, a list of FFT-based algorithms for matrix operations have been developed. They allow extremely fast convolution, superposition and inversion of covariance matrices under certain conditions. If adequately used in kriging problems, these algorithms lead to drastic speedup and reductions in storage requirements without changing the kriging estimator. However, they require second-order stationary covariance functions, estimation on regular grids, and the measurements must also form a regular grid. In this study, we show how to alleviate these rather heavy and many times unrealistic restrictions. Stationarity can be generalized to intrinsicity and beyond, if decomposing kriging problems into the sum of a stationary problem and a formally decoupled regression task. We use universal kriging, because it covers arbitrary forms of unknown drift and all cases of generalized covariance functions. Even more general, we use an extension to uncertain rather than unknown drift coefficients. The sampling locations may now be irregular, but must form a subset of the estimation grid. Finally, we present asymptotically exact but fast approximations to the estimation variance and point out application to conditional simulation, cokriging and sequential kriging. The drastic gain in computational and storage efficiency is demonstrated in test cases. Especially high-resolution and data-rich fields such as rainfall interpolation from radar measurements or seismic or other geophysical inversion can benefit from these improvements.

MSC:

86A32 Geostatistics

Software:

FFTW
Full Text: DOI

References:

[1] Ababou R, Bagtzoglou AC, Wood EF (1994) On the condition number of covariance matrices in kriging, estimation, and simulation of random fields. Math Geol 26(1):99–133 · Zbl 0970.86543 · doi:10.1007/BF02065878
[2] Barnett S (1990) Matrices methods and applications. Oxford applied mathematics and computing science series. Clarendon, Oxford
[3] Börm S, Grasedyck L, Hackbusch W (2003) Introduction to hierarchical matrices with applications. Eng Anal Bound Elem 27:405–422. doi: 10.1016/S0955–7997(02)00152–2 · Zbl 1035.65042 · doi:10.1016/S0955-7997(02)00152-2
[4] Chan RH, Ng MK (1996) Conjugate gradient methods for Toeplitz systems. SIAM Rev 38(3):427–482 · Zbl 0863.65013 · doi:10.1137/S0036144594276474
[5] Cirpka OA, Nowak W (2003) Dispersion on kriged hydraulic conductivity fields. Water Resour Res. doi: 10.1029/2001WR000598
[6] Cirpka OA, Nowak W (2004) First-order variance of travel time in non-stationary formations. Water Resour Res 40:W03507. doi: 10.1029/2003WR002851 · doi:10.1029/2003WR002851
[7] Cooley JW, Tukey JW (1965) An algorithm for the machine calculation of complex Fourier series. Math Comput 19:297–301 · Zbl 0127.09002 · doi:10.1090/S0025-5718-1965-0178586-1
[8] Davis PJ (1979) Circulant matrices. Pure and applied mathematics. Wiley, New York
[9] Davis MW, Culhane PG (1984) Contouring very large data sets using kriging. In: Verly G (eds) Geostatistics for natural resources characterization, Part 2. Reidel, Dordrecht
[10] Davis MW, Grivet C (1984) Kriging in a global neighborhood. Math Geol 16(3):249–265 · doi:10.1007/BF01032690
[11] Dietrich CR, Newsam GN (1989) A stability analysis of the geostatistical approach to aquifer transmissivity identification. Stoch Hydrol Hydraul 3:293–316 · Zbl 0701.62100 · doi:10.1007/BF01543462
[12] Dietrich CR, Newsam GN (1993) A fast and exact method for multidimensional Gaussian stochastic simulations. Water Resour Res 29(8):2861–2869 · doi:10.1029/93WR01070
[13] Dietrich CR, Newsam GN (1996) A fast and exact method for multidimensional Gaussian stochastic simulations: Extension to realizations conditioned on direct and indirect measurements. Water Resour Res 32(6):1643–1652 · doi:10.1029/94WR02977
[14] Dietrich CR, Newsam GN (1997) Fast and exact simulation of stationary Gaussian processes through circulant embedding of the covariance matrix. SIAM J Sci Comput 18(4):1088–1107 · Zbl 0890.65149 · doi:10.1137/S1064827592240555
[15] Duijndam AJW, Schonewille MA (1999) Nonuniform fast Fourier transform. Geophysics 64(2):539–551 · doi:10.1190/1.1444560
[16] Dykaar BB, Kitanidis PK (1992) Determination of the effective hydraulic conductivity for heterogeneous porous media using a numerical spectral approach. 1. Method. Water Resour Res 28(4):1155–1166 · doi:10.1029/91WR03084
[17] Fessler JA, Sutton BP (2003) Nonuniform fast Fourier transform using min-max interpolation. IEEE Trans Signal Process 51(2):560–574 · Zbl 1369.94048 · doi:10.1109/TSP.2002.807005
[18] Fourmont K (2003) Non-equispaced fast Fourier transforms with applications to tomography. J Fourier Anal Appl 9(5):431–450 · Zbl 1073.65151 · doi:10.1007/s00041-003-0021-1
[19] Frigo M, Johnson SG (1998) FFTW: An adaptive software architecture for the FFT. In: Proc ICASSP, vol 3. IEEE Press, New York, pp 1381–1384. http://www.fftw.org
[20] Fuentes M (2007) Approximate likelihood for large irregularly spaced spatial data. J Am Stat Assoc 102(477) 321–331. doi: 10.1198/016214506000000852 · Zbl 1284.62589 · doi:10.1198/016214506000000852
[21] Gallivan K, Thirumalai S, Dooren PV, Vermaut V (1996) High performance algorithms for Toeplitz and block Toeplitz matrices. Linear Algebra Appl 241–243(13):343–388 · Zbl 0859.65017 · doi:10.1016/0024-3795(95)00649-4
[22] Golub GH, van Loan CF (1996) Matrix computations, 3rd edn. John Hopkins University Press, Baltimore · Zbl 0865.65009
[23] Good IJ (1950) On the inversion of circulant matrices. Biometrika 37:185–186 · Zbl 0037.14502
[24] Greengard L, Lee J-Y (2004) Accelerating the nonuniform fast Fourier transform. SIAM Rev 46(3):443–454 · Zbl 1064.65156 · doi:10.1137/S003614450343200X
[25] Hestenes MR, Stiefel E (1952) Methods of conjugate gradients for solving linear systems. J Res Nat Bur Stand 49:409–436 · Zbl 0048.09901
[26] Kailath T, Sayed AH (1995) Displacement structure: Theory and applications. SIAM Rev 37(3):297–386 · Zbl 0839.65028 · doi:10.1137/1037082
[27] Kailath T, Sayed AH (1999) Fast reliable algorithms of matrices with structure. SIAM, Philadelphia · Zbl 0931.65018
[28] Kitanidis PK (1986) Parameter uncertainty in estimation of spatial functions: Bayesian analysis. Water Resour Res 22(4):499–507 · doi:10.1029/WR022i004p00499
[29] Kitanidis PK (1993) Generalized covariance functions in estimation. Math Geol 25(5):525–540 · doi:10.1007/BF00890244
[30] Kitanidis PK (1995) Quasi-linear geostatistical theory for inversing. Water Resour Res 31(10):2411–2419 · doi:10.1029/95WR01945
[31] Kitanidis PK (1996) Analytical expressions of conditional mean, covariance, and sample functions in geostatistics. Stoch Hydrol Hydraul 12:279–294 · Zbl 0878.62072 · doi:10.1007/BF01581870
[32] Kitanidis PK (1997) Introduction to geostatistics. Cambridge University Press, Cambridge
[33] Kitanidis PK, Vomvoris EG (1983) A geostatistical approach to the inverse problem in groundwater modeling (steady state) and one-dimensional simulations. Water Resour Res 19(3):677–690 · doi:10.1029/WR019i003p00677
[34] Kozintsev B (1999) Computations with Gaussian random fields. PhD thesis, Institute for Systems Research, University of Maryland
[35] Liu QH, Ngyuen N (1998) An accurate algorithm for nonuniform fast Fourier transforms (NUFFT’s). IEEE Microw Guided Wave Lett 8(1):18–20 · doi:10.1109/75.650975
[36] Müller WG (2007) Collecting spatial data. Optimum design of experiments for random fields, 3rd edn. Springer, Berlin
[37] Newsam GN, Dietrich CR (1994) Bounds on the size of nonnegative definite circulant embeddings of positive definite Toeplitz matrices. IEEE Trans Inf Theory 40(4):1218–1220 · Zbl 0811.65036 · doi:10.1109/18.335952
[38] Nowak W (2005) Geostatistical methods for the identification of flow and transport parameters in subsurface flow. Ph.D. thesis, Institut für Wasserbau, Universität Stuttgart, http://elib.uni-stuttgart.de/opus/frontdoor.php?source_opus=2275
[39] Nowak W, Cirpka OA (2004) A modified Levenberg–Marquardt algorithm for quasi-linear geostatistical inversing. Adv Water Resour 27(7):737–750 · doi:10.1016/j.advwatres.2004.03.004
[40] Nowak W, Cirpka OA (2006) Geostatistical inference of conductivity and dispersion coefficients from hydraulic heads and tracer data. Water Resour Res 42:W08416. doi: 10.1029/2005WR004832 · doi:10.1029/2005WR004832
[41] Nowak W, Tenkleve S, Cirpka OA (2003) Efficient computation of linearized cross-covariance and auto-covariance matrices of interdependent quantities. Math Geol 35(1):53–66 · Zbl 1302.86028 · doi:10.1023/A:1022365112368
[42] Omre H (1987) Bayesian kriging-merging observations and qualified guesses in kriging. Math Geol 19(1):25–39 · doi:10.1007/BF01275432
[43] Pegram GGS (2004) Spatial interpolation and mapping of rainfall (SIMAR). Data merging for rainfall map production, vol 3. Water Research Commission Report (1153/1/04)
[44] Press WH, Teukolsky BPFSA, Vetterling WT (1992) Numerical recipes: the art of scientific computing, 2nd edn. Cambridge University Press, Cambridge
[45] Pukelsheim F (2006) Optimal design of experiments. Classics in applied mathematics. SIAM, Philadelphia · Zbl 1101.62063
[46] Rino CL (1970) The inversion of covariance matrices by finite Fourier transforms. IEEE Trans Inf Theory 16:230–232 · Zbl 0193.18106 · doi:10.1109/TIT.1970.1054418
[47] Schweppe FC (1973) Uncertain dynamic systems. Prentice-Hall, Englewood Cliffs
[48] Shewchuk JR (1994). An introduction to the conjugate gradient method without the agonizing pain. http://www.cs.berkeley.edu/\(\sim\)jrs/
[49] Strang G (1986) A proposal for Toeplitz matrix calculations. Stud Appl Math 74:171–176 · Zbl 0621.65025
[50] Trapp GE (1973) Inverses of circulant matrices and block circulant matrices. Kyungpook Math J 13(1): 11–20 · Zbl 0271.15003
[51] Van Barel M, Heinig G, Kravanja P (2001) A stabilized superfast solver for nonsymmetric Toeplitz systems. SIAM J Matrix Anal A 23(2):494–510 · Zbl 1002.65033 · doi:10.1137/S0895479899362302
[52] van Loan CF (1992) Computational frameworks for the fast Fourier transform. SIAM, Philadelphia · Zbl 0757.65154
[53] Varga RS (1954) Eigenvalues of circulant matrices. Pac J Math 4:151–160 · Zbl 0055.01002
[54] Vargas-Guzmán JA, Yeh T-CJ (1999) Sequential kriging and cokriging: Two powerful geostatistical approaches. Stoch Environ Res Risk Assess 13:416–435 · Zbl 0956.62063 · doi:10.1007/s004770050047
[55] Vargas-Guzmán JA, Yeh T-CJ (2002) The successive linear estimator: a revisit. Adv Water Resour 25:773–781 · doi:10.1016/S0309-1708(02)00066-0
[56] Wesson SM, Pegram GGS (2004) Radar rainfall image repair techniques. Hydrol Earth Syst Sci 8(2):8220–8234 · doi:10.5194/hess-8-220-2004
[57] Zimmerman DL (1989) Computationally exploitable structure of covariance matrices and generalized covariance matrices in spatial models. J Stat Comput Simul 32(1/2):1–15 · Zbl 0726.62162 · doi:10.1080/00949658908811149
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.