×

Multiparty controlled deterministic secure quantum communication through entanglement swapping. (English) Zbl 1172.81307

Summary: A three-party controlled deterministic secure quantum communication scheme through entanglement swapping is proposed firstly. In the scheme, the sender needs to prepare a class of Greenberger-Horne-Zeilinger (GHZ) states which are used as quantum channel. The two communicators may securely communicate under the control of the controller if the quantum channel is safe. The roles of the sender, the receiver, and the controller can be exchanged owing to the symmetry of the quantum channel. Different from other controlled quantum secure communication schemes, the scheme needs lesser additional classical information for transferring secret information. Finally, it is generalized to a multiparty controlled deterministic secure quantum communication scheme.

MSC:

81P68 Quantum computation
94A60 Cryptography
Full Text: DOI

References:

[1] DOI: 10.1103/PhysRevLett.67.661 · Zbl 0990.94509 · doi:10.1103/PhysRevLett.67.661
[2] DOI: 10.1103/PhysRevLett.68.557 · Zbl 0969.94500 · doi:10.1103/PhysRevLett.68.557
[3] DOI: 10.1103/PhysRevLett.81.3018 · doi:10.1103/PhysRevLett.81.3018
[4] DOI: 10.1103/PhysRevA.65.022317 · doi:10.1103/PhysRevA.65.022317
[5] DOI: 10.1103/PhysRevA.65.032302 · doi:10.1103/PhysRevA.65.032302
[6] DOI: 10.1103/PhysRevLett.89.187902 · doi:10.1103/PhysRevLett.89.187902
[7] DOI: 10.1103/PhysRevA.68.042317 · doi:10.1103/PhysRevA.68.042317
[8] DOI: 10.1103/PhysRevA.69.052319 · doi:10.1103/PhysRevA.69.052319
[9] DOI: 10.1103/PhysRevA.71.044305 · doi:10.1103/PhysRevA.71.044305
[10] DOI: 10.1016/j.physleta.2006.06.054 · Zbl 1236.81050 · doi:10.1016/j.physleta.2006.06.054
[11] DOI: 10.1016/j.optcom.2005.04.048 · doi:10.1016/j.optcom.2005.04.048
[12] DOI: 10.1103/PhysRevA.60.157 · doi:10.1103/PhysRevA.60.157
[13] DOI: 10.12693/APhysPolA.101.357 · doi:10.12693/APhysPolA.101.357
[14] DOI: 10.1016/j.physleta.2004.06.009 · Zbl 1134.81338 · doi:10.1016/j.physleta.2004.06.009
[15] DOI: 10.1140/epjb/e2004-00296-4 · doi:10.1140/epjb/e2004-00296-4
[16] Man Z. X., Chin. Phys. Lett. 22 pp 18–
[17] Xia Y., J. Kor. Phys. Soc. 47 pp 753–
[18] Man Z. X., Chin. Phys. Lett. 22 pp 22–
[19] Gao T., Chin. Phys. 14 pp 0893–
[20] DOI: 10.1142/S0129183105007881 · Zbl 1081.81508 · doi:10.1142/S0129183105007881
[21] Gao T., Chin. Phys. Lett. 23 pp 2656–
[22] DOI: 10.1103/PhysRevA.73.042305 · doi:10.1103/PhysRevA.73.042305
[23] DOI: 10.1134/S1063776107120047 · doi:10.1134/S1063776107120047
[24] DOI: 10.1103/PhysRevA.75.026301 · doi:10.1103/PhysRevA.75.026301
[25] DOI: 10.1007/s11467-007-0050-3 · doi:10.1007/s11467-007-0050-3
[26] Dong L., Int. J. Mod. Phy. C 18 pp 01167–
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.