×

A large-eddy-based lattice Boltzmann model for turbulent flow simulation. (English) Zbl 1172.76018

Summary: A novel and simple large-eddy-based lattice Boltzmann model is proposed to simulate two-dimensional turbulence. Unlike existing lattice Boltzmann models for turbulent flow simulation, which are based on primitive-variables Navier-Stokes equations, the target macroscopic equations of the present model are vorticity-streamfunction equations. Thanks to the intrinsic features of vorticity-streamfunction equations, the present model is efficient, stable and simple for two-dimensional turbulence simulation. The advantages of the present model are validated by numerical experiments.

MSC:

76F65 Direct numerical and large eddy simulation of turbulence
76M28 Particle methods and lattice-gas methods
Full Text: DOI

References:

[1] Tennekes, H.; Lumley, J. L., A First Course in Turbulence (1972), MIT Press: MIT Press Cambridge · Zbl 0285.76018
[2] Rogallo, R. S.; Moin, P., Numerical simulation of turbulent flows, Annu. Rev. Fluid Mech., 16, 99-137 (1984) · Zbl 0604.76040
[3] Pitsch, H., Large-eddy simulation of turbulent combustion, Annu. Rev. Fluid Mech., 38, 453-482 (2006) · Zbl 1097.76042
[4] Kraichnan, R. H.; Montgomery, D., Two-dimensional turbulence, Rep. Prog. Phys., 43, 547-619 (1980)
[5] Elkaim, D.; Reggio, M.; Camarero, R., Simulating two-dimensional turbulent flow by using the \(k \text{``-''} \operatorname{\&z.epsiv;}\) model and the vorticity-streamfunction formulation, Int. J. Numer. Meth. Fluids, 14, 961-980 (1992) · Zbl 0771.76036
[6] Milane, R. E., Large eddy simulation (2D) using diffusion-velocity method and vortex-in-cell, Int. J. Numer. Meth. Fluids, 44, 837-860 (2004) · Zbl 1047.76035
[7] Chai, Z.; Shi, B.; Zheng, L., Simulating high Reynolds number flow in two-dimensional lid-driven cavity by multi-relaxation-time lattice Boltzmann method, Chin. Phys., 15, 1855-1863 (2006)
[8] Qian, Y.; dHumieres, D.; Lallemand, P., Lattice BGK models for Navier-Stokes equation, Europhys. Lett., 17, 479-484 (1992) · Zbl 1116.76419
[9] Benzi, R.; Succi, S.; Vergassola, M., The lattice Boltzmann equation: theory and applications, Phys. Rep., 222, 145-197 (1992)
[10] Chen, S.; Doolen, G. D., Lattice Boltzmann method for fluid flows, Annu. Rev. Fluid Mech., 30, 329-364 (1998) · Zbl 1398.76180
[11] Succi, S., The Lattice Boltzmann Equation for Fluid Dynamics and Beyond (2001), Oxford University Press: Oxford University Press Oxford · Zbl 0990.76001
[12] Goldstein, R. J.; Ibele, W. E.; Patankar, S. V., Heat transfer – a review of 2003 literature, Int. J. Heat Mass transfer, 49, 451-534 (2006) · Zbl 1189.76002
[13] Succi, S.; Foti, E.; Higuera, F., Three-dimensional flows in complex geometries with the lattice Boltzmann method, Europhys. Lett., 10, 433-438 (1989)
[14] Chen, S.; Dawson, S. P.; Doolen, G. D., Lattice methods and their applications to reacting systems, Comput. Chem. Eng., 19, 617646 (1995)
[15] Chen, H.; Kandasamy, S.; Orszag, S., Extended Boltzmann kinetic equation for turbulent flows, Science, 301, 633636 (2003)
[16] Qian, Y.; Succi, S.; Orszag, S., Recent advances in lattice Boltzmann computing, Annu. Rev. Comput. Phys., 3, 195-242 (1995)
[17] Hazi, G.; Imre, A. R.; Mayer, G., Lattice Boltzmann methods for two-phase flow modeling, Annals Nucl. Energy, 29, 1421-1453 (2002)
[18] Yu, D.; Mei, R.; Luo, L. S., Viscous flow computations with the method of lattice Boltzmann equation, Prog. Aerospace Sci., 39, 329-367 (2003)
[19] Sukop, M. C.; Thorne, D. T., Lattice Boltzmann Modeling: An Introduction for Geoscientists and Engineers (2006), Springer: Springer Heidelberg, Berlin, New York
[20] Chakraborty, S.; Chatterjee, D., An enthalpy-based hybrid lattice-Boltzmann method for modelling solid-liquid phase transition in the presence of convective transport, J. Fluid Mech., 592, 155-175 (2007) · Zbl 1128.76048
[21] Chen, S.; Liu, Z.; He, Z., Int. J. Mod. Phys. C, 18, 187-202 (2007) · Zbl 1119.80378
[22] Guo, Z.; Zheng, C.; Shi, B., Lattice Boltzmann equation with multiple effective relaxation times for gaseous microscale flow, Phys. Rev. E, 77, 036707/1-036707/12 (2008)
[23] Raabe, D., Overview of the lattice Boltzmann method for nano- and microscale fluid dynamics in materials science and engineering, Modell. Simul. Mater. Sci. Eng., 12, 13-46 (2004)
[24] Meng, J.; Qian, Y.; Li, X., Lattice Boltzmann model for traffic flow, Phys. Rev. E, 77, 036108/1-036108/9 (2008)
[25] Furtado, K.; Yeomans, J. M., Lattice Boltzmann simulations of phase separation in chemically reactive binary fluids, Phys. Rev. E, 73, 066124/1-066124/7 (2006)
[26] Martinez, D. O.; Matthaeus, W. H.; Chen, S., Comparison of spectral method and lattice Boltzmann simulations of two-dimensional hydrodynamics, Phys. Fluids, 6, 1285-1298 (1994) · Zbl 0826.76069
[27] He, X.; Doolen, G. D.; Clark, T., Comparison of the lattice Boltzmann method and the artificial compressibility method for Navier-Stokes equations, J. Comput. Phys., 179, 439-451 (2002) · Zbl 1130.76397
[28] Al-Jahmany, Y. Y.; Brenner, G.; Brunn, P. O., Comparative study of lattice-Boltzmann and finite volume methods for the simulation of laminar flow through a 4:1 planar contraction, Int. J. Numer. Meth. Fluids, 46, 903-920 (2004) · Zbl 1060.76636
[29] Al-Zoubi, A.; Brenner, G., Comparative study of thermal flows with different finite volume and lattice Boltzmann schemes, Int. J. Mod. Phys. C, 15, 307-319 (2004)
[30] Seta, T.; Takegoshi, E.; Okui, K., Lattice Boltzmann simulation of natural convection in porous media, Math. Comput. Simul., 72, 195200 (2006) · Zbl 1116.76421
[31] Dong, Y.; Sagaut, P., A study of time correlations in lattice Boltzmann-based large-eddy simulation of isotropic turbulence, Phys. Fluids, 20, 035105/1-035105/11 (2008) · Zbl 1182.76211
[32] Djenidi, L., Structure of a turbulent crossbar near-wake studied by means of lattice Boltzmann simulation, Phys. Rev. E, 77, 036310/1-036310/12 (2008)
[33] Geier, M.; Greiner, A.; Korvink, J. G., Cascaded digital lattice Boltzmann automata for high Reynolds number flow, Phys. Rev. E, 73, 066705/1-066705/10 (2006)
[34] Yu, H.; Girimaji, S.; Luo, L., Lattice Boltzmann simulations of decaying homogeneous isotropic turbulence, Phys. Rev. E, 71, 016708/1-016708/5 (2005)
[35] Krafczyk, M.; Tolke, J.; Luo, L., Large-eddy simulations with a multiple-relaxation-time LBE model, Int. J. Mod. Phys. B, 17, 33-39 (2003)
[36] van Heijst, G. J.F.; Clercx, H. J.H., Laboratory modeling of geophysical vortices, Annu. Rev. Fluid Mech., 41, 143-164 (2009) · Zbl 1157.76012
[37] Liu, H. J.; Zou, C.; Shi, B. C., Thermal lattice-BGK model based on large-eddy simulation of turbulent natural convection due to internal heat generation, Int. J. Heat Mass Transfer, 49, 4672-4680 (2006) · Zbl 1121.76340
[38] Chen, S.; Tolke, J.; Krafczyk, M., A new method for the numerical solution of vorticity-streamfunction formulations, Comput. Methods Appl. Mech. Eng., 198, 367-376 (2008) · Zbl 1228.76115
[39] Chen, S.; Tolke, J.; Geller, S.; Krafczyk, M., Lattice Boltzmann model for incompressible axisymmetric flows, Phys. Rev. E, 78, 046703 (2008)
[40] Chen, S.; Tolke, J.; Krafczyk, M., Simulation of buoyancy-driven flows in a vertical cylinder using a simple lattice Boltzmann model, Phys. Rev. E, 79, 016704 (2009)
[41] Quartapelle, L., Numerical Solution of the Incompressible Navier-Stokes Equations (1983), Birkhäuser: Birkhäuser Basle
[42] Majda, A. J.; Bertozzi, A., Vorticity and Incompressible Flow (2001), Cambridge University Press: Cambridge University Press Cambridge
[43] Peyret, R., Spectral Methods for Incompressible Viscous Flow (2002), Springer-Verlag: Springer-Verlag New York · Zbl 1005.76001
[44] Chen, S.; Krafczyk, M., Entropy generation in turbulent natural convection due to internal heat generation, Int. J. Thermal Sci. (2009)
[45] Deng, B.; Shi, B.; Wang, G., A new lattice Boltzmann Bhatnagar-Gross-Krook model for the convection-diffusion equation with a source term, Chin. Phys. Lett., 22, 267-270 (2005)
[46] Chen, S.; Liu, Z.; Zhang, C., A novel coupled lattice Boltzmann model for low Mach number combustion simulation, Appl. Math. Comput., 193, 266-284 (2007) · Zbl 1193.80026
[47] Ginzburg, I., Equilibrium-type and link-type lattice Boltzmann models for generic advection and anisotropic-dispersion equation, Adv. Water Res., 28, 1171-1195 (2005)
[48] Rasin, I.; Succi, S.; Miller, W., A multi-relaxation lattice kinetic method for passive scalar diffusion, J. Comput. Phys., 206, 453-462 (2005) · Zbl 1120.76354
[49] He, X.; Ling, N., Lattice Boltzmann simulation of electrochemical systems, Comput. Phys. Commun., 129, 158-166 (2000) · Zbl 0976.76066
[50] Guo, Z.; Zhao, T. S.; Shi, Y., A lattice Boltzmann algorithm for electro-osmotic flows in microfluidic devices, J. Chem. Phys., 122, 144907 (2005)
[51] Chai, Z.; Guo, Z.; Shi, B., Study of electro-osmotic flows in microchannels packed with variable porosity media via lattice Boltzmann method, J. Appl. Phys., 101, 104913/1-104913/8 (2007)
[52] Wang, J.; Wang, M.; Li, Z., Lattice Poisson-Boltzmann simulations of electro-osmotic flows in microchannels, J. Colloid. Interface Sci., 296, 729-736 (2006)
[53] Hirabayashi, M.; Chen, Y.; Ohashi, H., The lattice BGK model for the Poisson equation, JSME Int. J. Ser. B, 44, 1, 45-52 (2001)
[54] Iliescu, T.; John, V.; Layton, W. J.; Matthies, G.; Tobiska, L., A numerical study of a class of LES models, Int. J. Comput. Fluid Dyn., 17, 75-85 (2003) · Zbl 1148.76327
[55] Larcheveque, L.; Sagaut, P.; Mary, I.; Labbe, O.; Comte, P., Large-eddy simulation of a compressible flow past a deep cavity, Phys. Fluids, 15, 193-210 (2003) · Zbl 1185.76220
[56] de Matos, A.; Pinho, F. A.A.; Neto, A. S., Large-eddy simulation of turbulent flow over a two-dimensional cavity with temperature fluctuations, Int. J. Heat Mass Transfer, 42, 49-59 (1999) · Zbl 0944.76559
[57] Hou, S.; Sterling, J.; Chen, S.; Doolen, G. D., A lattice Boltzmann subgrid model for high Reynolds number flows, Fields Inst. Comm., 6, 151-166 (1996) · Zbl 0923.76275
[58] Rubio, G.; De Roeck, W.; Baelmans, M.; Desmet, W., Numerical identification of flow-induced oscillation modes in rectangular cavities using large eddy simulation, Int. J. Numer. Meth. Fluids, 53, 851-866 (2007) · Zbl 1175.76079
[59] Ghia, U.; Ghia, K.; Shin, C., High-Re solutions for incompressible flow using Navier-Stokes equations and a multigrid method, J. Comput. Phys., 48, 387-411 (1982) · Zbl 0511.76031
[60] Hou, S.; Zou, Q.; Chen, S.; Doolen, G.; Cogley, A. C., Simulation of cavity flow by the lattice Boltzmann method, J. Comput. Phys., 118, 329-347 (1995) · Zbl 0821.76060
[61] Erturk, E.; Corke, T. C.; Gokcol, C., Numerical solutions of 2-D steady incompressible driven cavity flow at high Reynolds numbers, Int. J. Numer. Meth. Fluids, 48, 747-774 (2005) · Zbl 1071.76038
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.