×

Distribution of periodic torus orbits on homogeneous spaces. (English) Zbl 1172.37003

The authors obtain results toward the equidistribution of certain families of periodic torus orbits on homogeneous spaces. They focus on the case of diagonal torus actions on quotients of \(PGL_{n}({\mathbb R})\). By attaching to each periodic orbit an integral invariant (the discriminant), they obtain the result that certain standard conjectures about the distribution of such orbits hold up to exceptional sets of at most \(O(\Delta^{\epsilon})\) orbits of discriminant at most \(\Delta \). The proof relies on the facts that periodic orbits are well-separated and that torus actions are ‘measure-rigid’. Examples of sequences of periodic orbits of these actions that fail to become equidistributed (even in higher rank) are given. Also, the authors give an application of their results to sharpen a theorem of Minkowski on ideal classes in totally real number fields of cubic and higher degrees.

MSC:

37A17 Homogeneous flows
37A45 Relations of ergodic theory with number theory and harmonic analysis (MSC2010)
11E99 Forms and linear algebraic groups

References:

[1] Y. Benoist and H. Oh, Equidistribution of rational matrices in their conjugacy classes , Geom. Funct. Anal. 17 , 2007, 1–32. · Zbl 1138.37003 · doi:10.1007/s00039-006-0585-4
[2] A. Borel and Harish-Chandra, Arithmetic subgroups of algebraic groups , Ann. of Math. (2) 75 (1962), 485–535. JSTOR: · Zbl 0107.14804 · doi:10.2307/1970210
[3] J. Bourgain, A. A. Glibichuk, and S. V. Konyagin, Estimate for the number of sums and products and for exponential sums in fields of prime order , J. London Math. Soc. (2) 73 (2006), 380–398. · Zbl 1093.11057 · doi:10.1112/S0024610706022721
[4] J. Bourgain and M.-C. Chang, Sum-product theorem and exponential sum estimates in residue classes with modulus involving few prime factors , C. R. Math. Acad. Sci. Paris 339 (2004), 463–466. · Zbl 1154.11311 · doi:10.1016/j.crma.2004.08.007
[5] J. W. S. Cassels and H. P. F. Swinnerton-Dyer, On the product of three homogeneous linear forms and the indefinite ternary quadratic forms , Philos. Trans. Roy. Soc. London. Ser. A. 248 (1955), 73–96. JSTOR: · Zbl 0065.27905 · doi:10.1098/rsta.1955.0010
[6] S. G. Dani and G. A. Margulis, “Limit distributions of orbits of unipotent flows and values of quadratic forms” in I. M. Gel\(^\prime\)fand Seminar , Adv. Soviet Math. 16 , Part 1, Amer. Math. Soc., Providence, 1993, 91–137. · Zbl 0814.22003
[7] W. Duke, Hyperbolic distribution problems and half-integral weight Maass forms , Invent. Math. 92 (1988), 73–90. · Zbl 0628.10029 · doi:10.1007/BF01393993
[8] -, Extreme values of Artin \(L\) -functions and class numbers, Compositio Math. 136 (2003), 103–115. · Zbl 1013.11072 · doi:10.1023/A:1022695505997
[9] M. Einsiedler and A. Katok, Invariant measures on \(G/\Gamma\) for split simple Lie-groups \(G\), Comm. Pure Appl. Math. 56 (2003), 1184–1221. · Zbl 1022.22023 · doi:10.1002/cpa.10092
[10] -, Rigidity of measures –.-the high entropy case and non-commuting foliations , Israel J. Math. 148 (2005), 169–238. · Zbl 1097.37017 · doi:10.1007/BF02775436
[11] M. Einsiedler, A. Katok, and E. Lindenstrauss, Invariant measures and the set of exceptions to Littlewood’s conjecture, Ann. of Math. (2) 164 (2006), 513–560. · Zbl 1109.22004 · doi:10.4007/annals.2006.164.513
[12] M. Einsiedler and E. Lindenstrauss, “Diagonaizable flows on locally homogeneous spaces and number theory” in International Congress of Mathematicians, Vol. II (Madrid, 2006) , Eur. Math. Soc., Zürich, 2006, 1731–1759. · Zbl 1121.37028
[13] M. Einsiedler, E. Lindenstrauss, Ph. Michel, and A. Venkatesh, Distribution of compact torus orbits, II , in preparation. · Zbl 1172.37003
[14] -, Distribution of periodic torus orbits and Duke’s theorem for cubic fields , preprint,\arxiv0708.1113v1[math.NT]
[15] A. Eskin and H. Oh, Representations of integers by an invariant polynomial and unipotent flows , Duke Math. J. 135 (2006), 481–506. · Zbl 1138.11011 · doi:10.1215/S0012-7094-06-13533-0
[16] A. Gorodnik, Open problems in dynamics and related fields , J. Med. Dyn. 1 (2007), 1–35. · Zbl 1118.37002 · doi:10.3934/jmd.2007.1.1
[17] G. Harcos and Ph. Michel, The subconvexity problem for Rankin-Selberg \(L\) -functions and equidistribution of Heegner points, II , Invent. Math. 163 (2006), 581–655. · Zbl 1111.11027 · doi:10.1007/s00222-005-0468-6
[18] T. W. Hungerford, Algebra , Grad. Texts in Math. 73 , Springer, New York, 1980.
[19] B. Kalinin and R. J. Spatzier, Rigidity of the measurable structure for algebraic actions of higher-rank A belian groups, Ergodic Theory Dynam. Systems 25 (2005), 175–200. · Zbl 1073.37005 · doi:10.1017/S014338570400046X
[20] A. Katok and R. J. Spatzier, Invariant measures for higher-rank hyperbolic abelian actions , Ergodic Theory Dynam. Systems 16 (1996), 751–778.; Correction , Ergodic Theory Dynam. Systems 18 (1998), 503–507. Mathematical Reviews (MathSciNet): · Zbl 0859.58021 · doi:10.1017/S0143385700009081
[21] A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems , Encyclopedia Math. Appl. 54 , Cambridge Univ. Press, Cambridge, 1995. · Zbl 0878.58020
[22] D. Y. Kleinbock and G. A. Margulis, “Bounded orbits of nonquasiunipotent flows on homogeneous spaces” in Sinaĭ’s Moscow Seminar on Dynamical Systems , Amer. Math. Soc. Transl. Ser. 2 171 , Amer. Math. Soc., Providence, 1996, 141–172. · Zbl 0843.22027
[23] E. Lindenstrauss, Invariant measures and arithmetic quantum unique ergodicity , Ann. of Math. (2) 163 (2006), 165–219. · Zbl 1104.22015 · doi:10.4007/annals.2006.163.165
[24] E. Lindenstrauss and B. Weiss, On sets invariant under the action of the diagonal group , Ergodic Theory Dynam. Systems 21 (2001), 1481–1500. · Zbl 1073.37006 · doi:10.1017/S0143385701001717
[25] Yu. V. Linnik, Ergodic Properties of Algebraic Fields , Ergeb. Math. Grenzgeb. 45 , Springer, New York, 1968. · Zbl 0162.06801
[26] G. A. Margulis, “Oppenheim conjecture” in Fields Medallists’ Lectures , World Sci. Ser. 20th Century Math. 5 , World Sci. Publ. River Edge, New Jersey, 1997.
[27] -, “Problems and conjectures in rigidity theory” in Mathematics: Frontiers and Perspectives , Amer. Math. Soc., Providence, 2000, 161–174. · Zbl 0952.22005
[28] G. A. Margulis and G. M. Tomanov, Invariant measures for actions of unipotent groups over local fields on homogeneous spaces , Invent. Math. 116 (1994), 347–392. · Zbl 0816.22004 · doi:10.1007/BF01231565
[29] -, Measure rigidity for almost linear groups and its applications , J. Anal. Math. 69 (1996), 25–54. · Zbl 0864.22005 · doi:10.1007/BF02787100
[30] S. Mozes and N. Shah, On the space of ergodic invariant measures of unipotent flows , Ergodic Theory Dynam. Systems 15 (1995), 149–159. · Zbl 0818.58028 · doi:10.1017/S0143385700008282
[31] H. Oh, Finiteness of compact maximal flats of bounded volume , Ergodic Theory Dynam. Systems 24 (2004), 217–225. · Zbl 1048.22002 · doi:10.1017/S0143385703000233
[32] V. Platonov and A. Rapinchuk, Algebraic Groups and Number Theory , Pure Appl. Math. 139 , Academic Press, Boston, 1994. · Zbl 0841.20046
[33] A. Popa, Central values of Rankin \(L\)-series over real quadratic fields, Compos. Math. 142 (2006), 811–866. · Zbl 1144.11041 · doi:10.1112/S0010437X06002259
[34] G. Prasad and M. S. Raghunathan, Cartan subgroups and lattices in semi-simple groups , Ann. of Math. (2) 96 (1972), 296–317. JSTOR: · Zbl 0245.22013 · doi:10.2307/1970790
[35] M. S. Raghunathan, Discrete subgroups of Lie groups , Ergeb. Math. Grenzgeb 68 , Springer, New York, 1972. · Zbl 0254.22005
[36] M. Ratner, On Raghunathan’s measure conjecture , Ann. of Math. (2) 134 (1991), 545–607. JSTOR: · Zbl 0763.28012 · doi:10.2307/2944357
[37] -, Raghunathan’s topological conjecture and distributions of unipotent flows , Duke Math. J. 63 (1991), 235–280. · Zbl 0733.22007 · doi:10.1215/S0012-7094-91-06311-8
[38] M. Rees, Some \(R^2\)-anosov flows, preprint, 1982.
[39] R. Remak, Über Grössenbeziehungen zwischen Diskriminante und Regulator eines algebraischen Z ahlkörpers , Compositio Math. 10 (1952), 245–285. · Zbl 0047.27202
[40] D. J. Rudolph, \(\times 2\) and \( \times 3\) invariant measures and entropy , Ergodic Theory Dynam. Systems 10 (1990), 395–406. · Zbl 0709.28013 · doi:10.1017/S0143385700005629
[41] P. Sarnak, “Reciprocal geodesics” in Analytic Number Theory (Göttingen, Germany, 2005) , Clay. Math. Proc. 7 , Amer. Math. Soc., Providence, 2007, 217–237. · Zbl 1198.11039
[42] N. A. Shah, Uniformly distributed orbits of certain flows on homogeneous spaces , Math. Ann. 289 (1991), 315–334. · Zbl 0702.22014 · doi:10.1007/BF01446574
[43] C. L. Siegel, The average measure of quadratic forms with given determinant and signature , Ann. of Math. (2) 45 (1944), 667–685. JSTOR: · Zbl 0063.07007 · doi:10.2307/1969296
[44] G. Tomanov, “Actions of maximal tori on homogeneous spaces” in Rigidity in Dynamics and Geometry (Cambridge, 2000) , Springer, Berlin, 2002, 407–424. · Zbl 1012.22021
[45] G. Tomanov and B. Weiss, Closed orbits for actions of maximal tori on homogeneous spaces, Duke Math. J. 119 (2003), 367–392. · Zbl 1040.22005 · doi:10.1215/S0012-7094-03-11926-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.