×

On the regularity of the solutions to the 3D Navier-Stokes equations: a remark on the role of the helicity. (English. Abridged French version) Zbl 1172.35051

Summary: We show that if velocity and vorticity are orthogonal at each point (and they become orthogonal fast enough) then solutions of the 3D Navier-Stokes equations are smooth. This condition implies that the helicity is identically zero and, in a certain sense, the flow resembles the 2D geometric situation.

MSC:

35Q30 Navier-Stokes equations
35J65 Nonlinear boundary value problems for linear elliptic equations
76D05 Navier-Stokes equations for incompressible viscous fluids
76D03 Existence, uniqueness, and regularity theory for incompressible viscous fluids
Full Text: DOI

References:

[1] Beirão da Veiga, H.; Berselli, L. C., On the regularizing effect of the vorticity direction in incompressible viscous flows, Differential Integral Equations, 15, 3, 345-356 (2002) · Zbl 1014.35072
[2] Beirão da Veiga, H.; Berselli, L. C., Navier-Stokes equations: Green matrices, vorticity direction, and regularity up to the boundary, J. Differential Equations, 246, 2, 597-628 (2009) · Zbl 1155.35067
[3] Berker, R., Intégration des équations du mouvement d’un fluide visqueux incompressible, (Handbuch der Physik, Bd. VIII/2 (1963), Springer: Springer Berlin), 1-384 · JFM 62.0981.04
[4] L.C. Berselli, D. Córdoba, Geometric conditions related to the helicity and the problem of regularity for the Navier-Stokes equations, in preparation; L.C. Berselli, D. Córdoba, Geometric conditions related to the helicity and the problem of regularity for the Navier-Stokes equations, in preparation
[5] Constantin, P., Geometric statistics in turbulence, SIAM Rev., 36, 1, 73-98 (1994) · Zbl 0803.35106
[6] Constantin, P.; Fefferman, C., Direction of vorticity and the problem of global regularity for the Navier-Stokes equations, Indiana Univ. Math. J., 42, 3, 775-789 (1993) · Zbl 0837.35113
[7] Constantin, P.; Foias, C., Navier-Stokes Equations (1988), University of Chicago Press: University of Chicago Press Chicago, IL · Zbl 0687.35071
[8] Foias, C.; Hoang, L.; Nicolaenko, B., On the helicity in 3D-periodic Navier-Stokes equations. I. The non-statistical case, Proc. London Math. Soc., 94, 1, 53-90 (2007) · Zbl 1109.76015
[9] Galdi, G. P., An Introduction to the Navier-Stokes Initial-Boundary Value Problem, Fundamental Directions in Mathematical Fluid Mechanics, Adv. Math. Fluid Mech. (2000), Birkhäuser: Birkhäuser Basel, pp. 1-70 · Zbl 1108.35133
[10] Ladyžhenskaya, O. A., The Mathematical Theory of Viscous Incompressible Flow, Mathematics and its Applications, vol. 2 (1969), Gordon and Breach Sci. Publ.: Gordon and Breach Sci. Publ. New York · Zbl 0184.52603
[11] Ladyžhenskaya, O. A., Solution “in the large” to the boundary-value problem for the Navier-Stokes equations in two space variables, Soviet Phys. Dokl., 123, 3, 1128-1131 (1958), (427-429 Dokl. Akad. Nauk SSSR) · Zbl 0090.41502
[12] Ladyžhenskaya, O. A., Unique global solvability of the three-dimensional Cauchy problem for the Navier-Stokes equations in the presence of axial symmetry, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov (LOMI), 155-177 (1968)
[13] Leray, J., Sur le mouvement d’un liquide visqueux emplissant l’espace, Acta Math., 63, 1, 193-248 (1934) · JFM 60.0726.05
[14] Mahalov, A.; Titi, E. S.; Leibovich, S., Invariant helical subspaces for the Navier-Stokes equations, Arch. Rational Mech. Anal., 112, 3, 193-222 (1990) · Zbl 0708.76044
[15] Moffatt, H. K., The degree of knottedness of tangled vortex lines, J. Fluid Mech., 35, 117-129 (1969) · Zbl 0159.57903
[16] Ross Ethier, C.; Steinman, D. A., Exact fully 3D Navier-Stokes solutions for benchmarking, Int. J. Numer. Methods Fluids, 19, 369-375 (1994) · Zbl 0814.76031
[17] Taylor, G. I., On decay of vortices in a viscous fluid, Philos. Mag., 46, 6, 671-674 (1923) · JFM 49.0607.02
[18] Ukhovskii, M. R.; Iudovich, V. I., Axially symmetric flows of ideal and viscous fluids filling the whole space, J. Appl. Math. Mech., 32, 52-61 (1968)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.