×

On Stokes operators with variable viscosity in bounded and unbounded domains. (English) Zbl 1172.35050

The authors consider the Stokes problem with non-constant viscosity \(\nu(x)\) in bounded or unbounded domains in \(\mathbb R^d\). They assume \(\nu(x) = \nu_\infty + \nu'(x)\), \(\nu' \in W^{1,r_1}(\Omega)\) and \(\partial \Omega \in W^{2-1/r_2,r_2}\) with \(d<r_1, r_2\). Further, \(1<q<\infty\) with \(q, q/(q-1) \leq r_1, r_2\). The boundary conditions are on \(\Gamma_1\) the homogeneous Dirichlet condition and on \(\Gamma_2\) generally inhomogeneous Neumann condition (i.e. \((2\nu(x) Dv-pI)\cdot n = a\)). The assumptions on \(\Omega\) imply that the Helmholtz decomposition in \(L^q\) is valid with the given boundary conditions. 7mm
a)
In the case of a generally unbounded domain \(\Omega\), the resolvent estimate for the Stokes problem is proved. Further, for the shifted Stokes operator \(A_q\) it is shown that it admits the bounded \(H_\infty\) calculus.
b)
If \(\Omega\) is bounded and \(\Gamma_1\) is nonempty, it is in addition shown that the Stokes operator admits the bounded \(H_\infty\) calculus.
c)
If \(c\in\mathbb R\) is such that \(A_q+c\) admits the bounded \(H_\infty\) calculus, then the modified evolutionary Stokes problem (with the Stokes operator replaced by \(A_q+c\)) has for \(1<p<\infty\) the maximal \(L^p(L^q)\) regularity.

MSC:

35Q30 Navier-Stokes equations
76D07 Stokes and related (Oseen, etc.) flows
47A60 Functional calculus for linear operators
47F05 General theory of partial differential operators
47A10 Spectrum, resolvent

References:

[1] Abe T. (2004) On a resolvent estimate of the Stokes equation with Neumann-Dirichlet-type boundary condition on an infinite layer. Math. Methods Appl. Sci. 27(9): 1007–1048 · Zbl 1050.35065 · doi:10.1002/mma.483
[2] Abe T., Shibata Y. (2003) On a resolvent estimate of the Stokes equation on an infinite layer. J. Math. Soc. Jpn 55(2): 469–497 · Zbl 1048.35052 · doi:10.2969/jmsj/1191419127
[3] Abe T., Shibata Y. (2003) On a resolvent estimate of the Stokes equation on an infinite layer, part 2, {\(\lambda\)} = 0 case. J. Math. Fluid Mech. 5: 245–274 · Zbl 1162.76328
[4] Abels, H.: On a diffuse interface model for two-phase flows of viscous, incompressible fluids with matched densities. Arch. Ration. Mech. Anal. doi: 10.1007/s00205-008-0160-2 . · Zbl 1254.76158
[5] Abels H. (2002) Bounded imaginary powers of the Stokes operator in an infinite layer. J. Evol. Equ. 2: 439–457 · Zbl 1030.35131 · doi:10.1007/PL00012599
[6] Abels, H.: Stokes equations in asymptotically flat domains and the motion of a free surface. PhD thesis, TU Darmstadt, Shaker Verlag, Aachen (2003) · Zbl 1028.35117
[7] Abels H. (2005) Bounded imaginary powers and H calculus of the Stokes operator in two-dimensional exterior domains. Math. Z. 251(3): 589–605 · Zbl 1091.35054 · doi:10.1007/s00209-005-0824-7
[8] Abels, H.: Bounded imaginary powers and H calculus of the Stokes operator in unbounded domains. In: Nonlinear Elliptic and Parabolic Problems. Progr. Nonlinear Differential Equations Appl., vol. 64, pp. 1–15. Birkhäuser, Basel (2005) · Zbl 1109.35084
[9] Abels H. (2005) Pseudodifferential boundary value problems with non-smooth coefficients. Commun. Partial Differ. Equ. 30: 1463–1503 · Zbl 1087.35099 · doi:10.1080/03605300500299554
[10] Abels H. (2005) Reduced and generalized Stokes resolvent equations in asymptotically flat layers, part I: unique solvability. J. Math. Fluid. Mech. 7: 201–222 · Zbl 1070.35020 · doi:10.1007/s00021-004-0116-8
[11] Abels H. (2005) Reduced and generalized Stokes resolvent equations in asymptotically flat layers, part II: H calculus. J. Math. Fluid. Mech. 7: 223–260 · Zbl 1083.35085 · doi:10.1007/s00021-004-0117-7
[12] Abels H. (2006) Generalized Stokes resolvent equations in an infinite layer with mixed boundary conditions. Math. Nachr. 279(4): 1–17 · Zbl 1117.35060 · doi:10.1002/mana.200310365
[13] Abels, H.: Diffuse interface models for two-phase flows of viscous incompressible fluids. Lecture Notes, Max Planck Institute for Mathematics in the Sciences, no. 36/2007 (2007) · Zbl 1124.35060
[14] Abels H., Wiegner M. (2005) Resolvent estimates for the Stokes operator on an infinite layer. Differ. Integr. Equ. 18(10): 1081–1110 · Zbl 1212.35343
[15] Adams R.A. (1975) Sobolev Spaces. Academic Press, New York · Zbl 0314.46030
[16] Amann H. (1997) Operator-valued fourier multipliers, vector-valued besov spaces, and applications. Math. Nachr. 186: 5–56 · Zbl 0880.42007 · doi:10.1002/mana.3211860102
[17] Bergh J., Löfström J. (1976) Interpolation Spaces. Springer, Berlin · Zbl 0344.46071
[18] Borchers W., Sohr H. (1987) On the semigroup of the Stokes operator for exterior domains in L q -spaces. Math. Z. 196: 415–425 · Zbl 0636.76027 · doi:10.1007/BF01200362
[19] Borchers W., Varnhorn W. (1993) On the boundedness of the Stokes semigroup in two-dimensional exterior domains. Math. Z. 213: 275–299 · Zbl 0794.35070 · doi:10.1007/BF03025722
[20] Bothe D., Prüss J. (2007) L P -theory for a class of non-Newtonian fluids. SIAM J. Math. Anal. 39(2): 379–421 (electronic) · Zbl 1172.35052 · doi:10.1137/060663635
[21] Chua S.K. (1992) Extension theorems on weighted Sobolev space. Indiana Univ. Math. J. 41: 1027–1076 · Zbl 0767.46025 · doi:10.1512/iumj.1992.41.41053
[22] Danchin R. (2006) Density-dependent incompressible fluids in bounded domains. J. Math. Fluid Mech. 8(3): 333–381 · Zbl 1142.76354 · doi:10.1007/s00021-004-0147-1
[23] Boutet de Monvel L. (1971) Boundary problems for pseudo-differential operators. Acta Math. 126: 11–51 · Zbl 0206.39401 · doi:10.1007/BF02392024
[24] Denk R., Hieber M., Prüss J. (2003) \({\mathcal{R}}\) -boundedness, Fourier multipliers and problems of elliptic and parabolic type. Mem. Am. Math. Soc. 166(788): viii+114 · Zbl 1274.35002
[25] Dore G., Venni A. (1987) On the closedness of the sum of two closed operators. Math. Z 196: 189–201 · Zbl 0615.47002 · doi:10.1007/BF01163654
[26] Farwig R. (2003) Weighted L q -Helmholtz decompositions in infinite cylinders and in infinite layers. Adv. Differ. Equ. 8: 357–384 · Zbl 1038.35068
[27] Farwig R., Kozono H., Sohr H. (2005) An L q -approach to Stokes and Navier–Stokes equations in general domains. Acta Math. 195: 21–53 · Zbl 1111.35033 · doi:10.1007/BF02588049
[28] Farwig R., Ri M.-H. (2007) The resolvent problem and H calculus of the Stokes operator in unbounded cylinders with several exits to infinity. J. Evol. Equ. 7(3): 497–528 · Zbl 1170.35073 · doi:10.1007/s00028-007-0300-4
[29] Farwig R., Ri M.-H. (2007) Stokes resolvent systems in an infinite cylinder. Math. Nachr. 280(9-10): 1061–1082 · Zbl 1131.35055 · doi:10.1002/mana.200510536
[30] Farwig R., Sohr H. (1994) Generalized resolvent estimates for the Stokes system in bounded and unbounded domains. J. Math. Soc. Jpn 46(4): 607–643 · Zbl 0819.35109 · doi:10.2969/jmsj/04640607
[31] Farwig R., Sohr H. (1996) Helmholtz decomposition and stokes resolvent system for aperture Domains in L q -spaces. Analysis 16: 1–26 · Zbl 0847.35101
[32] Giga Y. (1981) Analyticity of the semigroup generated by the Stokes operator in L r spaces. Math. Z. 178: 297–329 · doi:10.1007/BF01214869
[33] Giga Y. (1985) Domains of fractional powers of the Stokes operator in L r Spaces. Arch. Ration. Mech. Anal. 89: 251–265 · Zbl 0584.76037 · doi:10.1007/BF00276874
[34] Giga Y., Sohr H. (1989) On the Stokes operator in exterior domains. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 36(1): 103–130
[35] Giga Y., Sohr H. (1991) Abstract L p estimates for the Cauchy problem with applications to the Navier–Stokes equations in exterior domains. J. Funct. Anal. 102: 72–94 · Zbl 0739.35067 · doi:10.1016/0022-1236(91)90136-S
[36] Grubb G. (1990) Pseudo-differential boundary problems in L p spaces. Commun. Partial Differ. Equ. 15: 289–340 · Zbl 0723.35091 · doi:10.1080/03605309908820688
[37] Grubb G. (1996) Functional Calculus of Pseudodifferential Boundary Problems, 2nd edn. Birkhäuser, Basel · Zbl 0844.35002
[38] Grubb G., Kokholm N.J. (1993) A global calculus of parameter-dependent pseudodifferential boundary problems in L p Sobolev spaces. Acta Math. 171(2): 165–229 · Zbl 0811.35176 · doi:10.1007/BF02392532
[39] Grubb G., Solonnikov V.A. (1991) Boundary value problems for the nonstationary Navier–Stokes equations treated by pseudo-differential methods. Math. Scand. 69: 217–290 · Zbl 0766.35034
[40] Málek, J., Nečas, J., Rokyta, M., Ružička, M.: Weak and measure-valued solutions to evolutionary PDEs. In: Applied Mathematics and Mathematical Computation, vol. 13, vii, 317 p. Chapman & Hall, London (1996) · Zbl 0851.35002
[41] Kumano-Go H., Nagase M. (1978) Pseudo-differential operators with non-regular symbols and applications. Funkcial Ekvac. 21: 151–192 · Zbl 0395.35089
[42] Ladyženskaja O.A., Solonnikov, V.A.: The unique solvability of an initial-boundary value problem for viscous incompressible inhomogeneous fluids. Zap. Naućn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 52,52–109, 218–219 (1975). Boundary value problems of mathematical physics, and related questions of the theory of functions, 8
[43] Marschall J. (1988) Pseudodifferential operators with coefficients in Sobolev spaces. Trans. Am. Math. Soc. 307(1): 335–361 · Zbl 0679.35088
[44] McIntosh, A.: Operators which have an H calculus. In: Miniconference on Operator Theory and Partial Differential Equations. In: Jefferies, B., McIntosh, A., Ricker, W. (eds.) Proceedings of Center Math. Anal. A.N.U., vol. 14, pp. 210–231 (1986)
[45] Miyakawa T. (1994) The Helmholtz decomposition of vector fields in some unbounded domains. Math. J. Toyama Univ. 17: 115–149 · Zbl 0814.35096
[46] Noll A., Saal J. (2003) H calculus for the Stokes operator on L q -spaces. Math. Z. 244: 651–688 · Zbl 1059.47017
[47] Schumacher, K.: A chart preserving the normal vector and extensions of normal derivatives in weighted function. Preprint, TU Darmstadt, No. 2510 (2007) · Zbl 1218.47019
[48] Simader, C.G., Sohr, H.: A new approach to the Helmholtz decomposition and the Neumann problem in L q -spaces for bounded and exterior domains. In: Mathematical Problems Relating to the Navier–Stokes Equation. Ser. Adv. Math. Appl. Sci., vol. 11 , pp. 1–35. World Scientific, River Edge (1992) · Zbl 0791.35096
[49] Solonnikov V.A. (2001) L p -estimates for solutions to the initial boundary-value problem for the generalized Stokes system in a bounded domain. J. Math. Sci. (New York) 105(5): 2448–2484 Function theory and partial differential equations · doi:10.1023/A:1011321430954
[50] Solonnikov, V.A.: Estimates of the solution of model evolution generalized Stokes problem in weighted H ölder spaces. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) bf 336 (Kraev. Zadachi Mat. Fiz. i Smezh. Vopr. Teor. Funkts. 37),211–238, 277 (2006) · Zbl 1127.35051
[51] Triebel H. (1978) Interpolation Theory, Function Spaces, Differential Operators. North-Holland, Amsterdam · Zbl 0387.46032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.