×

Separating invariants. (English) Zbl 1172.13001

The author defines a general notion of a separating subset. Explicitly, let \(X\) and \(K\) be sets (\(K\) will be a field or an integral domain in most situations), and let \(K^X\) be the set of all functions from \(X\) to \(K\). Let \(F\) be any subset of \(K^X\). A subset \(S\) of \(F\) is called an \(F\)-separating set if, for any \(x,y \in X\), if \(g(x)=g(y)\) for all \(g \in S\), then \(f(x)=f(y)\) for all \(f \in F\). This notion is useful in the study of modular invariant theory.
Among other results in this paper, the following theorem is proved.
Theorem. Let \(X\) be a set, \(K\) be a commutative noetherian ring, \(A\) be a finitely generated \(K\)-algebra contained in \(K^X\). For any subset \(F\) of \(A\), there exists a finite \(F\)-separating subset \(S\) for \(F\). Many examples are exhibited also.

MSC:

13A50 Actions of groups on commutative rings; invariant theory
Full Text: DOI

References:

[1] Boutin, M.; Kemper, G., On reconstructing \(n\)-point configurations from the distribution of distances or areas, Adv. Appl. Math., 32, 709-735 (2004) · Zbl 1072.68103
[2] Derksen, H.; Kemper, G., (Computational Invariant Theory. Computational Invariant Theory, Encyclopaedia of Mathematical Sciences, vol. 130 (2002), Springer-Verlag: Springer-Verlag Berlin, Heidelberg, New York) · Zbl 1011.13003
[3] Derksen, H.; Kemper, G., Computing invariants of algebraic group actions in arbitrary characteristic, Adv. Math., 217, 2089-2129 (2008) · Zbl 1138.13003
[4] Domokos, M., Typical separating invariants, Transform. Groups, 12, 49-63 (2007) · Zbl 1192.13006
[5] Draisma, J., Kemper, G., Wehlau, D., 2006. Polarization of separating invariants. Canad. J. Math. (in press); Draisma, J., Kemper, G., Wehlau, D., 2006. Polarization of separating invariants. Canad. J. Math. (in press) · Zbl 1143.13008
[6] Fleischmann, P., The Noether bound in invariant theory of finite groups, Adv. Math., 156, 23-32 (2000) · Zbl 0973.13003
[7] Fogarty, J., On Noether’s bound for polynomial invariants of a finite group, Electron. Res. Announc. Amer. Math. Soc., 7, 5-7 (2001) · Zbl 0980.13003
[8] Gatermann, K., (Computer Algebra Methods for Equivariant Dynamical Systems. Computer Algebra Methods for Equivariant Dynamical Systems, Lecture Notes in Mathematics, vol. 1728 (2000), Springer-Verlag: Springer-Verlag Berlin, Heidelberg) · Zbl 0944.65131
[9] Kemper, G., Computing invariants of reductive groups in positive characteristic, Transform. Groups, 8, 159-176 (2003) · Zbl 1044.13002
[10] Geometric invariance in computer vision, (Mundy, J. L.; Zisserman, A., Artificial Intelligence (1992), MIT Press: MIT Press Cambridge, MA)
[11] Nagata, M., On the 14th problem of Hilbert, Amer. J. Math., 81, 766-772 (1959) · Zbl 0192.13801
[12] Noether, E., Der Endlichkeitssatz der Invarianten endlicher Gruppen, Math. Ann., 77, 89-92 (1916) · JFM 45.0198.01
[13] Sezer, M., Sharpening the generalized Noether bound in the invariant theory of finite groups, J. Algebra, 254, 252-263 (2002) · Zbl 1058.13005
[14] Thiéry, N. M., Algebraic invariants of graphs; a study based on computer exploration, SIGSAM Bull., 34, 9-20 (2000) · Zbl 1052.05050
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.