×

Bragg resonance of waves in a two-layer fluid propagating over bottom ripples. I: Perturbation analysis. (English) Zbl 1171.76330

Summary: We investigate, via perturbation analyses, the mechanisms of nonlinear resonant interaction of surface-interfacial waves with a rippled bottom in a two-layer density-stratified fluid. As in a one-layer fluid, three classes of Bragg resonances are found to exist if nonlinear interactions up to the third order in the wave/ripple steepness are considered. As expected, the wave system associated with the resonances is more complicated than that in a one-layer fluid. Depending on the specifics of the resonance condition, the resonance-generated wave may be a surface or internal mode and may be transmitted or reflected. At the second order, class I Bragg resonance occurs involving two surface and/or internal waves and one bottom-ripple component. The interaction of an incident surface/internal wave with the bottom ripple generates a new surface or internal wave that may propagate in the same or the opposite direction as the incident wave. At the third order, class II and III Bragg resonances occur involving resonant interactions of four wave/ripple components: two surface and/or internal waves and two bottom-ripple components for class II resonance; three surface and/or internal waves and one bottom-ripple components for class III resonance. As in class I resonance, the resonance-generated wave in class II resonance has the same frequency as that of the incident wave. For class III resonance, the frequency of the resonant wave is equal to the sum or difference of the two incident wave frequencies. We enumerate and represent, using Feynman-like diagrams, the possible cases and combinations for Bragg resonance up to the third order (in two dimensions). Analytical regular perturbation results are obtained and discussed for all three classes of Bragg resonances. These are valid for limited bottom patch lengths and initial/finite growth of the resonant waves. For long bottom patches, a uniformly valid solution using multiple scales is derived for class I resonance. A number of applications underscoring the importance and implication of these nonlinear resonances on the evolution of ocean waves are presented and discussed. For example, it is shown that three internal/surface waves co-propagating over bottom topography are resonant under a broad range of Bragg conditions. The present study provides the theoretical basis and understanding for the companion paper (Alam, Liu & Yue 2008), where a direct numerical solution for the general nonlinear problem is pursued.

MSC:

76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
76B55 Internal waves for incompressible inviscid fluids
76M45 Asymptotic methods, singular perturbations applied to problems in fluid mechanics
86A05 Hydrology, hydrography, oceanography
Full Text: DOI

References:

[1] DOI: 10.1017/S0022112079000653 · Zbl 0409.76018 · doi:10.1017/S0022112079000653
[2] DOI: 10.1029/JC080i003p00328 · doi:10.1029/JC080i003p00328
[3] DOI: 10.1017/S0022112064001550 · Zbl 0125.44203 · doi:10.1017/S0022112064001550
[4] DOI: 10.1017/S0022112087001101 · doi:10.1017/S0022112087001101
[5] Baines, Cambridge Monographs on Mechanics (1997)
[6] Baines, Topographic Effects in Stratified Flows (1995)
[7] Mei, Advanced Series on Ocean Engineering (2005)
[8] DOI: 10.1017/S0022112006004484 · Zbl 1178.76089 · doi:10.1017/S0022112006004484
[9] DOI: 10.1017/S0022112085000714 · Zbl 0588.76022 · doi:10.1017/S0022112085000714
[10] DOI: 10.1017/S0022112001006218 · Zbl 1058.76014 · doi:10.1017/S0022112001006218
[11] DOI: 10.1017/S0334270000010705 · Zbl 0854.76026 · doi:10.1017/S0334270000010705
[12] DOI: 10.1029/2000JC000465 · doi:10.1029/2000JC000465
[13] DOI: 10.1017/S0022112097007969 · Zbl 0908.76014 · doi:10.1017/S0022112097007969
[14] DOI: 10.1017/S0022112007007112 · Zbl 1141.76346 · doi:10.1017/S0022112007007112
[15] Lamb, Hydrodynamics (1932)
[16] Alam, J. Fluid Mech. 624 pp 225– (2009)
[17] DOI: 10.1017/S0022112094003605 · Zbl 0828.76024 · doi:10.1017/S0022112094003605
[18] DOI: 10.1017/S0022112086001994 · Zbl 0596.76017 · doi:10.1017/S0022112086001994
[19] DOI: 10.1017/S0022112003005196 · Zbl 1063.76524 · doi:10.1017/S0022112003005196
[20] DOI: 10.1016/S0967-0637(97)00091-5 · doi:10.1016/S0967-0637(97)00091-5
[21] DOI: 10.1098/rspa.1998.0199 · Zbl 0979.76505 · doi:10.1098/rspa.1998.0199
[22] DOI: 10.1017/S0022112096007707 · Zbl 0875.76086 · doi:10.1017/S0022112096007707
[23] DOI: 10.1063/1.1645277 · Zbl 1186.76229 · doi:10.1063/1.1645277
[24] DOI: 10.1016/0025-3227(85)90122-7 · doi:10.1016/0025-3227(85)90122-7
[25] DOI: 10.1017/S0022112092000478 · doi:10.1017/S0022112092000478
[26] DOI: 10.1017/S0022112062001184 · Zbl 0108.20503 · doi:10.1017/S0022112062001184
[27] DOI: 10.1146/annurev.fl.11.010179.002011 · doi:10.1146/annurev.fl.11.010179.002011
[28] DOI: 10.1029/JC080i003p00291 · doi:10.1029/JC080i003p00291
[29] DOI: 10.1017/S0022112072003027 · Zbl 0257.76010 · doi:10.1017/S0022112072003027
[30] DOI: 10.1126/science.283.5399.188 · doi:10.1126/science.283.5399.188
[31] DOI: 10.1017/S0022112002003609 · Zbl 1163.76369 · doi:10.1017/S0022112002003609
[32] DOI: 10.1016/0377-0265(82)90029-X · doi:10.1016/0377-0265(82)90029-X
[33] DOI: 10.1098/rspa.2002.1077 · Zbl 1044.86002 · doi:10.1098/rspa.2002.1077
[34] DOI: 10.1016/0165-2125(96)00014-5 · Zbl 0925.76110 · doi:10.1016/0165-2125(96)00014-5
[35] DOI: 10.1063/1.868505 · Zbl 1032.76523 · doi:10.1063/1.868505
[36] Boegman, Limnol. Oceanogr. 48 pp 895– (2003) · doi:10.4319/lo.2003.48.2.0895
[37] DOI: 10.1017/S0022112088000266 · doi:10.1017/S0022112088000266
[38] DOI: 10.1098/rsta.1996.0008 · doi:10.1098/rsta.1996.0008
[39] Miropol’sky, Dynamics of Internal Gravity Waves in the Ocean: Atmospheric and Oceanographic Sciences Library (2001) · Zbl 1081.86002 · doi:10.1007/978-94-017-1325-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.