×

Finite volume scheme for two-phase flows in heterogeneous porous media involving capillary pressure discontinuities. (English) Zbl 1171.76035

Summary: We study a one-dimensional model for two-phase flows in heterogeneous media, in which the capillary pressure functions can be discontinuous with respect to space. We first give a model, leading to a system of degenerate nonlinear parabolic equations spatially coupled by nonlinear transmission conditions. We approximate the solution of our problem by a monotonous finite volume scheme. The convergence of the underlying discrete solution to a weak solution when the discretization step tends to 0 is then proven. We also show, under assumptions on the initial data, a uniform estimate on the flux, which is then used for the uniqueness proof. A density argument allows us to relax the assumptions on the initial data and to extend the existence-uniqueness frame to a family of solution obtained as limit of approximations. A numerical example is then given to illustrate the behavior of the model.

MSC:

76M12 Finite volume methods applied to problems in fluid mechanics
76S05 Flows in porous media; filtration; seepage
76T30 Three or more component flows
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs

References:

[1] Adimurthi and G.D. Veerappa Gowda, Conservation law with discontinuous flux. J. Math. Kyoto Univ.43 (2003) 27-70. · Zbl 1063.35114
[2] Adimurthi, J. Jaffré and G.D. Veerappa Gowda, Godunov-type methods for conservation laws with a flux function discontinuous in space. SIAM J. Numer. Anal.42 (2004) 179-208 (electronic). · Zbl 1081.65082 · doi:10.1137/S003614290139562X
[3] Adimurthi, S. Mishra and G.D. Veerappa Gowda, Optimal entropy solutions for conservation laws with discontinuous flux-functions. J. Hyperbolic Differ. Equ.2 (2005) 783-837. · Zbl 1093.35045 · doi:10.1142/S0219891605000622
[4] Adimurthi, S. Mishra and G.D. Veerappa Gowda, Existence and stability of entropy solutions for a conservation law with discontinuous non-convex fluxes. Netw. Heterog. Media2 (2007) 127-157 (electronic). Zbl1142.35508 · Zbl 1142.35508 · doi:10.3934/nhm.2007.2.127
[5] H.W. Alt and S. Luckhaus, Quasilinear elliptic-parabolic differential equations. Math. Z.183 (1983) 311-341. Zbl0497.35049 · Zbl 0497.35049 · doi:10.1007/BF01176474
[6] F. Bachmann, Analysis of a scalar conservation law with a flux function with discontinuous coefficients. Adv. Differ. Equ.9 (2004) 1317-1338. · Zbl 1102.35063
[7] F. Bachmann, Equations hyperboliques scalaires à flux discontinu. Ph.D. Thesis, Université Aix-Marseille I, France (2005).
[8] F. Bachmann, Finite volume schemes for a non linear hyperbolic conservation law with a flux function involving discontinuous coefficients. Int. J. Finite Volumes3 (2006) (electronic).
[9] F. Bachmann and J. Vovelle, Existence and uniqueness of entropy solution of scalar conservation laws with a flux function involving discontinuous coefficients. Comm. Partial Differ. Equ.31 (2006) 371-395. Zbl1102.35064 · Zbl 1102.35064 · doi:10.1080/03605300500358095
[10] M. Bertsch, R. Dal Passo and C.J. van Duijn, Analysis of oil trapping in porous media flow. SIAM J. Math. Anal.35 (2003) 245-267 (electronic). · Zbl 1049.35108 · doi:10.1137/S0036141002407375
[11] D. Blanchard and A. Porretta, Stefan problems with nonlinear diffusion and convection. J. Differ. Equ.210 (2005) 383-428. · Zbl 1075.35112 · doi:10.1016/j.jde.2004.06.012
[12] H. Brézis, Analyse Fonctionnelle : Théorie et applications. Masson (1983). Zbl0511.46001 · Zbl 0511.46001
[13] C. Cancès, Écoulements diphasiques en milieux poreux hétérogènes : modélisation et analyse des effets liés aux discontinuités de la pression capillaire. Ph.D. Thesis, Université de Provence, France (2008).
[14] C. Cancès, Nonlinear parabolic equations with spatial discontinuities. Nonlinear Differ. Equ. Appl.15 (2008) 427-456. Zbl1180.35534 · Zbl 1180.35534 · doi:10.1007/s00030-008-6030-7
[15] C. Cancès, Asymptotic behavior of two-phase flows in heterogeneous porous media for capillarity depending only of the space. I. Convergence to an entropy solution. arXiv:0902.1877 (submitted). · Zbl 1219.35136
[16] C. Cancès, Asymptotic behavior of two-phase flows in heterogeneous porous media for capillarity depending only of the space. II. Occurrence of non-classical shocks to model oil-trapping. arXiv:0902.1872 (submitted). · Zbl 1219.35139
[17] C. Cancès and T. Gallouët, On the time continuity of entropy solutions. arXiv:0812.4765v1 (2008). · Zbl 1232.35029
[18] C. Cancès, T. Gallouët and A. Porretta, Two-phase flows involving capillary barriers in heterogeneous porous media. Interfaces Free Bound.11 (2009) 239-258. Zbl1178.35196 · Zbl 1178.35196 · doi:10.4171/IFB/210
[19] J. Carrillo, Entropy solutions for nonlinear degenerate problems. Arch. Ration. Mech. Anal.147 (1999) 269-361. Zbl0935.35056 · Zbl 0935.35056 · doi:10.1007/s002050050152
[20] C. Chainais-Hillairet, Finite volume schemes for a nonlinear hyperbolic equation. Convergence towards the entropy solution and error estimate. ESAIM: M2AN33 (1999) 129-156. Zbl0921.65071 · Zbl 0921.65071 · doi:10.1051/m2an:1999109
[21] J. Droniou, A density result in Sobolev spaces. J. Math. Pures Appl. (9)81 (2002) 697-714. · Zbl 1033.46029
[22] G. Enchéry, R. Eymard and A. Michel, Numerical approximation of a two-phase flow in a porous medium with discontinuous capillary forces. SIAM J. Numer. Anal.43 (2006) 2402-2422. · Zbl 1145.76046 · doi:10.1137/040602936
[23] R. Eymard, T. Gallouët, M. Ghilani and R. Herbin, Error estimates for the approximate solutions of a nonlinear hyperbolic equation given by finite volume schemes. IMA J. Numer. Anal.18 (1998) 563-594. · Zbl 0973.65078 · doi:10.1093/imanum/18.4.563
[24] R. Eymard, T. Gallouët and R. Herbin, Finite volume methods, in Handbook of numerical analysis, P.G. Ciarlet and J.-L. Lions Eds., North-Holland, Amsterdam (2000) 713-1020. · Zbl 0981.65095
[25] G. Gagneux and M. Madaune-Tort, Unicité des solutions faibles d’équations de diffusion-convection. C. R. Acad. Sci. Paris Sér. I Math.318 (1994) 919-924. · Zbl 0826.35057
[26] J. Jimenez, Some scalar conservation laws with discontinuous flux. Int. J. Evol. Equ.2 (2007) 297-315. Zbl1133.35405 · Zbl 1133.35405
[27] K.H. Karlsen, N.H. Risebro and J.D. Towers, On a nonlinear degenerate parabolic transport-diffusion equation with a discontinuous coefficient. Electron. J. Differ. Equ.2002 (2002) n^\circ 93, 1-23 (electronic). Zbl1015.35049 · Zbl 1015.35049
[28] K.H. Karlsen, N.H. Risebro and J.D. Towers, Upwind difference approximations for degenerate parabolic convection-diffusion equations with a discontinuous coefficient. IMA J. Numer. Anal.22 (2002) 623-664. Zbl1014.65073 · Zbl 1014.65073 · doi:10.1093/imanum/22.4.623
[29] K.H. Karlsen, N.H. Risebro and J.D. Towers, L1 stability for entropy solutions of nonlinear degenerate parabolic convection-diffusion equations with discontinuous coefficients. Skr. K. Nor. Vidensk. Selsk.3 (2003) 1-49. Zbl1036.35104 · Zbl 1036.35104
[30] C. Mascia, A. Porretta and A. Terracina, Nonhomogeneous Dirichlet problems for degenerate parabolic-hyperbolic equations. Arch. Ration. Mech. Anal.163 (2002) 87-124. · Zbl 1027.35081 · doi:10.1007/s002050200184
[31] A. Michel and J. Vovelle, Entropy formulation for parabolic degenerate equations with general Dirichlet boundary conditions and application to the convergence of FV methods. SIAM J. Numer. Anal.41 (2003) 2262-2293 (electronic). · Zbl 1058.35127 · doi:10.1137/S0036142902406612
[32] A. Michel, C. Cancès, T. Gallouët and S. Pegaz, Numerical comparison of invasion percolation models and finite volume methods for buoyancy driven migration of oil in discontinuous capillary pressure fields. (In preparation).
[33] F. Otto, L1-contraction and uniqueness for quasilinear elliptic-parabolic equations. J. Differ. Equ.131 (1996) 20-38. Zbl0862.35078 · Zbl 0862.35078 · doi:10.1006/jdeq.1996.0155
[34] N. Seguin and J. Vovelle, Analysis and approximation of a scalar conservation law with a flux function with discontinuous coefficients. Math. Models Methods Appl. Sci.13 (2003) 221-257. Zbl1078.35011 · Zbl 1078.35011 · doi:10.1142/S0218202503002477
[35] J.D. Towers, Convergence of a difference scheme for conservation laws with a discontinuous flux. SIAM J. Numer. Anal.38 (2000) 681-698 (electronic). Zbl0972.65060 · Zbl 0972.65060 · doi:10.1137/S0036142999363668
[36] J.D. Towers, A difference scheme for conservation laws with a discontinuous flux: the nonconvex case. SIAM J. Numer. Anal.39 (2001) 1197-1218 (electronic). · Zbl 1055.65104 · doi:10.1137/S0036142900374974
[37] C.J. van Duijn, J. Molenaar and M.J. de Neef, The effect of capillary forces on immiscible two-phase flows in heterogeneous porous media. Transport Porous Med.21 (1995) 71-93.
[38] J. Vovelle, Convergence of finite volume monotone schemes for scalar conservation laws on bounded domains. Numer. Math.90 (2002) 563-596. · Zbl 1007.65066 · doi:10.1007/s002110100307
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.