×

Definition of a new predictor for multiaxial fatigue crack nucleation in rubber. (English) Zbl 1171.74419

Summary: From an engineering point of view, prediction of fatigue crack nucleation in automotive rubber parts is an essential prerequisite for the design of new components. We have derived a new predictor for fatigue crack nucleation in rubber. It is motivated by microscopic mechanisms induced by fatigue and developed in the framework of Configurational Mechanics. As the occurrence of macroscopic fatigue cracks is the consequence of the growth of pre-existing microscopic defects, the energy release rate of these flaws need to be quantified. It is shown that this microstructural evolution is governed by the smallest eigenvalue of the configurational (Eshelby) stress tensor. Indeed, this quantity appears to be a relevant multiaxial fatigue predictor under proportional loading conditions. Then, its generalization to non-proportional multiaxial fatigue problems is derived. Results show that the present predictor, which is related to the previously published predictors, is capable to unify multiaxial fatigue data.

MSC:

74R10 Brittle fracture
74B20 Nonlinear elasticity

References:

[1] Abraham, F.; Alshuth, T.; Jerrams, S., The effect of minimum stress and stress amplitude on the fatigue life of non strain crystallising elastomers, Mater. Design, 26, 239-245 (2005)
[2] André, N.; Cailletaud, G.; Piques, R., Haigh diagram for fatigue crack initiation prediction of natural rubber components, Kautsch. Gummi Kunstst., 52, 120-123 (1999)
[3] Andriyana, A., 2006. Définition d’une nouvelle grandeur prédictive pour la durée de vie en fatigue des matériaux élastomères. Ph.D. Thesis, Ecole Centrale de Nantes.; Andriyana, A., 2006. Définition d’une nouvelle grandeur prédictive pour la durée de vie en fatigue des matériaux élastomères. Ph.D. Thesis, Ecole Centrale de Nantes.
[4] Andriyana, A.; Verron, E., Prediction of fatigue life improvement in natural rubber using configurational stress, Int. J. Solids Struct., 44, 2079-2092 (2007) · Zbl 1291.74158
[5] ASTM, 1994. Standard test method for rubber property—extension cyclic fatigue. ASTM D 4482-4485.; ASTM, 1994. Standard test method for rubber property—extension cyclic fatigue. ASTM D 4482-4485.
[6] Baker, M.; Ericksen, J. L., Inequalities restricting the form of the stress-deformation relations for isotropic elastic solids and Reiner-Rivlin fluids, J. Wash. Acad. Sci., 44, 33-35 (1954)
[7] Bathias, C.; Houel, P.; Berete, Y. N.; Legorju, K., Damage characterization of elastomeric composites using X-Ray attenuation, (Reifsnider, K. L.; Dillard, D. A.; Cardon, A. H., Fatigue and Fracture: Progress in Durability Analysis of Composite Systems (1998), Balkema: Balkema Rotterdam), 103-110
[8] Budiansky, B.; Rice, J. R., Conservation laws and energy-release rates, J. Appl. Mech., 40, 201-203 (1973) · Zbl 0261.73059
[9] Cadwell, S. M.; Merrill, R. A.; Sloman, C. M.; Yost, F. L., Dynamic fatigue life of rubber, Rubber Chem. Technol., 13, 304-315 (1940)
[10] Chadwick, P., Applications of an energy-momentum tensor in non-linear elastostatics, J. Elastricity, 5, 249-258 (1975) · Zbl 0328.73006
[11] Denzer, R.; Barth, F. J.; Steinmann, P., Studies in elastic fracture mechanics based on the material force method, Int. J. Numer. Methods Eng., 58, 1817-1835 (2003) · Zbl 1032.74702
[12] Epstein, M.; Maugin, G. A., The energy-momentum tensor and material uniformity in finite elasticity, Acta Mech., 83, 127-133 (1990) · Zbl 0714.73029
[13] Eshelby, J. D., The force on an elastic singularity, Philos. Trans. R. Soc. London, Ser. A, 244, 87-112 (1951) · Zbl 0043.44102
[14] Eshelby, J. D., The elastic energy-momentum tensor, J. Elasticity, 5, 321-335 (1975) · Zbl 0323.73011
[15] Fielding, J. H., Flex life and crystallization of synthetic rubber, Ind. Eng. Chem., 35, 1259-1261 (1943)
[16] Gehman, S. D.; Clifford, R. P., Fatigue of rubber with two-way stretching, Rubber World, 131, 365 (1954)
[17] Gent, A. N., Cavitation in rubber: a cautionary tale, Rubber Chem. Technol., 63, G49-G53 (1990)
[18] Gent, A. N.; Lindley, P. B.; Thomas, A. G., Cut growth and fatigue of rubbers. I. The relationship between cut growth and fatigue, J. Appl. Polym. Sci., 8, 455-466 (1964)
[19] Green, A. E.; Adkins, J. E., Large Elastic Deformations (1960), The Clarendon Press: The Clarendon Press Oxford · Zbl 0090.17501
[20] Greensmith, H., Rupture of rubber. X. The change in stored energy on making a small cut in a test piece held in simple extension, J. Polym. Sci., 7, 993-1002 (1963)
[21] Griffith, A., The phenomena of rupture and flow in solids, Philos. Trans. R. Soc. London, Ser. A, 221, 163-198 (1920) · Zbl 1454.74137
[22] Gross, D.; Kolling, S.; Mueller, R.; Schmidt, I., Configurational forces and their application in solid mechanics, Eur. J. Mech. Solids A/Solids, 22, 669-692 (2003) · Zbl 1032.74515
[23] Gurtin, M. E., Configurational Forces as Basic Concept of Continuum Physics (2000), Springer: Springer Berlin · Zbl 0951.74003
[24] Hainsworth, S. V., An environmental scanning electron microscopy investigation of fatigue crack initiation and propagation in elastomers, Polym. Test., 26, 60-70 (2007)
[25] Holzapfel, G. A., Nonlinear Solid Mechanics. A Continuum Approach for Engineering (2000), Wiley: Wiley Chichester · Zbl 0980.74001
[26] Kienzler, R.; Herrmann, G., On the properties of the Eshelby tensor, Acta Mech., 125, 73-91 (1997) · Zbl 0896.73007
[27] Kienzler, R.; Herrmann, G., Mechanics in Material Space (2000), Springer: Springer Berlin · Zbl 0954.74001
[28] Kienzler, R.; Herrmann, G., Fracture criteria based on local properties of the Eshelby tensor, Mech. Res. Commun., 29, 521-527 (2002) · Zbl 1094.74541
[29] Kim, T. W.; Jeong, H. Y.; Choe, J. H.; Kim, Y. H., Prediction of the fatigue life of tires using ced and vcct, Key Eng. Mat., 297-300, 102-107 (2005)
[30] Kolling, S.; Mueller, R.; Gross, D., A computational concept for the kinetics of defects in anisotropic materials, Comput. Mat. Sci., 26, 87-94 (2003)
[31] Le Cam, J.-B., 2005. Endommagement en fatigue des élastomères. Ph.D. Thesis, Ecole Centrale de Nantes, France.; Le Cam, J.-B., 2005. Endommagement en fatigue des élastomères. Ph.D. Thesis, Ecole Centrale de Nantes, France.
[32] Le Cam, J.-B.; Huneau, B.; Verron, E.; Gornet, L., Mechanism of fatigue crack growth in carbon black filled natural rubber, Macromolecules, 37, 5011-5017 (2004)
[33] Legorju-Jago, K.; Bathias, C., Fatigue initiation and propagation in natural and synthetic rubbers, Int. J. Fatigue, 24, 85-92 (2002)
[34] Lemaitre, J., Petite histoire de l’expérimentation en mécanique des solides, Meccanica, 36, 13-35 (2001) · Zbl 1114.74300
[35] Liebe, T.; Denzer, R.; Steinmann, P., Application of the material force method to isotropic continuum damage, Comput. Mech., 30, 171-184 (2003) · Zbl 1090.74513
[36] Lindley, P., Energy for crack growth in model rubber components, J. Strain Anal., 7, 132-140 (1972)
[37] Mars, W.V., 2001. Multiaxial fatigue of rubber. Ph.D. Thesis, University of Toledo.; Mars, W.V., 2001. Multiaxial fatigue of rubber. Ph.D. Thesis, University of Toledo. · Zbl 1139.74352
[38] Mars, W. V., Cracking energy density as a predictor of fatigue life under multiaxial conditions, Rubber Chem. Technol., 75, 1-17 (2002)
[39] Mars, W. V.; Fatemi, A., A literature survey on fatigue analysis approaches for rubber, Int. J. Fatigue, 24, 949-961 (2002) · Zbl 1032.74001
[40] Martinovs, A., Gonca, V., 2006. Method of forecasting of mechanical properties and durations of service life of details from rubber. in: 5th International DAAAM Baltic Conference “Industrial Engineering. Adding Innovation Capacity of Labour Force and Entrepreneurs”.; Martinovs, A., Gonca, V., 2006. Method of forecasting of mechanical properties and durations of service life of details from rubber. in: 5th International DAAAM Baltic Conference “Industrial Engineering. Adding Innovation Capacity of Labour Force and Entrepreneurs”.
[41] Maugin, G. A., Material Inhomogeneities in Elasticity (1993), Chapman and Hall: Chapman and Hall London · Zbl 0797.73001
[42] Maugin, G. A., Material forces: concepts and applications, Appl. Mech. Rev., 48, 213-245 (1995)
[43] Maugin, G. A., The Thermodynamics of Nonlinear Irreversible Behaviors: an Introduction, Series A, vol. 27 (1999), World Scientific Series on Nonlinear Science: World Scientific Series on Nonlinear Science World Scientific, Singapore · Zbl 0945.80001
[44] Maugin, G. A., Material mechanics of materials, Theor. Appl. Mech., 27, 1-12 (2002) · Zbl 1065.74002
[45] Maugin, G. A.; Epstein, M.; Trimarco, C., Pseudomomentum and material forces in inhomogeneous materials: application to the fracture of electromagnetic materials in electromagnetoelastic fields, Int. J. Solids Struct., 29, 1889-1900 (1992) · Zbl 0764.73067
[46] Menzel, A.; Denzer, R.; Steinmann, P., On the comparison of two approaches to compute material forces for inelastic materials application to single-slip crystal-plasticity, Comput. Meth. Appl. Mech. and Eng., 193, 5411-5428 (2004) · Zbl 1112.74531
[47] Nguyen, T. D.; Govindjee, S.; Klein, P. A.; Gao, H., A material force method for inelastic fracture mechanics, J. Mech. Phys. Solids, 53, 91-121 (2005) · Zbl 1086.74036
[48] Ogden, R. W., Large deformation isotropic elasticity—on the correlation of theory and experiment for incompressible rubberlike solids, Proc. R. Soc. London, 326, 565-584 (1972) · Zbl 0257.73034
[49] Ostoja-Kuczynski, E.; Charrier, P.; Verron, E.; Marckmann, G.; Gornet, L.; Chagnon, G., Crack initiation in filled natural rubber: experimental database and macroscopic observations, (Busfield, J.; Muhr, A., Constitutive Models for Rubber III (2003), A.A. Balkema: A.A. Balkema Rotterdam), 3-10
[50] Rajagopal, K. R.; Srinivasa, A. R., On the role of the Eshelby energy-momentum tensor in materials with multiple natural configurations, Math. Mech. Solids, 10, 3-24 (2005) · Zbl 1104.74012
[51] Rice, J. R., A path independent integral and the approximate analysis of strain concentration by notches and cracks, J. Appl. Mech., 35, 379-386 (1968)
[52] Rivlin, R. S.; Thomas, A. G., Rupture of rubber. I. Characteristic energy for tearing, J. Polym. Sci., 10, 291-318 (1953)
[53] Ro, H.S., 1989. Modeling and interpretation of fatigue failure initiation in rubber related to pneumatic tires. Ph.D. Thesis, Purdue University, USA.; Ro, H.S., 1989. Modeling and interpretation of fatigue failure initiation in rubber related to pneumatic tires. Ph.D. Thesis, Purdue University, USA.
[54] Roach, J.F., 1982. Crack growth in elastomers under biaxial stresses. Ph.D. Thesis, University of Akron, USA.; Roach, J.F., 1982. Crack growth in elastomers under biaxial stresses. Ph.D. Thesis, University of Akron, USA.
[55] Roberts, B.J., Benzies, J.B., 1977. The relationship between uniaxial and equibiaxial fatigue in gum and carbon black filled vulcanizates. in: Proceedings of Rubbercon’77, vol. 2.1, pp. 1-13.; Roberts, B.J., Benzies, J.B., 1977. The relationship between uniaxial and equibiaxial fatigue in gum and carbon black filled vulcanizates. in: Proceedings of Rubbercon’77, vol. 2.1, pp. 1-13.
[56] Saintier, N.; André, N.; Cailletaud, G.; Piques, R., Crack nucleation and propagation under multiaxial fatigue in natural rubber, Int. J. Fatigue, 28, 61-72 (2006) · Zbl 1139.74377
[57] Steinmann, P., Application of material forces to hyperelastostatic fracture mechanics. I. Continuum mechanical setting, Int. J. Solids Struct., 37, 7371-7391 (2000) · Zbl 0992.74008
[58] Steinmann, P., On spatial and material settings of hyperelastostatic crystal defects, J. Mech. Phys. Solids, 50, 1743-1766 (2002) · Zbl 1041.74018
[59] Steinmann, P.; Ackermann, D.; Barth, F. J., Application of material forces to hyperelastostatic fracture mechanics. II. Computational setting, Int. J. Solids Struct., 38, 5509-5526 (2001) · Zbl 1066.74508
[60] Treloar, L. R.G., Stress-strain data for vulcanised rubber under various types of deformation, Trans. Faraday Soc., 40, 59-70 (1944)
[61] Truesdell, C., Noll, W., 1965. Handbuch der Physik Bd. vol. III/3, The Nonlinear Field Theories of Mechanics. Springer, Berlin.; Truesdell, C., Noll, W., 1965. Handbuch der Physik Bd. vol. III/3, The Nonlinear Field Theories of Mechanics. Springer, Berlin. · Zbl 0779.73004
[62] Verron, E., 1997. Contribution expérimentale et numérique aux procédés de moulage par soufflage et de thermoformage. Ph.D. Thesis, Ecole Centrale de Nantes, France.; Verron, E., 1997. Contribution expérimentale et numérique aux procédés de moulage par soufflage et de thermoformage. Ph.D. Thesis, Ecole Centrale de Nantes, France.
[63] Wöhler, A., Wöhler’s experiments on the strength of metals, Engineering, 2, 160-161 (1867)
[64] Young, D., Application of fatigue methods based on fracture mechanics for tire compound development, Rubber Chem. Technol., 63, 567-581 (1990)
[65] Zine, A.; Benseddiq, N.; Abdelaziz, M. N.; Hocine, N. A.; Bouami, D., Prediction of rubber fatigue life under multiaxial loading, Fatigue Fract. Eng. Mater. Struct., 29, 267-278 (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.