×

Compressible and incompressible constituents in anisotropic poroelasticity: the problem of unconfined compression of a disk. (English) Zbl 1171.74017

Summary: The governing equations for the theory of anisotropic poroelastic materials with incompressible constituents undergoing small deformations are developed from the theory of anisotropic poroelastic materials without the constituent incompressibility constraint. The development of the constituent specific incompressibility constraint is accomplished by restricting the elastic constants rather than by introducing Lagrange multipliers, the conventional method. The advantage of the approach is insight into the nature of the elastic response that characterizes incompressible poroelasticity. An application of the theory to the unconfined compression of a circular porous disk is presented to illustrate the effects of compressibility vs. incompressibility and transverse isotropy vs. isotropy.

MSC:

74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
74E10 Anisotropy in solid mechanics
Full Text: DOI

References:

[1] Armstrong, G. C.; Lai, W. M.; Mow, V. C., An analysis of the unconfined compression of articular cartilage, J. Biomech. Eng., 106, 165-173 (1984)
[2] Biot, M. A., General theory of three-dimensional consolidation, J. Appl. Phys., 12, 155-164 (1941) · JFM 67.0837.01
[3] Biot, M. A., Theory of elasticity and consolidation for a porous anisotropic solid, J. Appl. Phys., 26, 182 (1955) · Zbl 0067.23603
[4] Cohen, B.; Lai, W. M.; Mow, V. C., A transversely isotropic biphasic model for unconfined compression of growth plate and chondroepiphysis, J. Biomech. Eng., 120, 491-496 (1998)
[5] Cowin, S. C.; Mehrabadi, M. M., On the structure of the linear anisotropic elastic symmetries, J, Mech. Phys. Solids, 40, 1459-1472 (1992) · Zbl 0837.73013
[6] Cowin, S. C., Optimization of the strain energy density for linear anisotropic elastic materials, J, Elasticity, 34, 45-68 (1994) · Zbl 0820.73007
[7] Cowin, S. C.; Mehrabadi, M. M., Anisotropic symmetries of linear elasticity, Appl. Mech. Revs, 48, 247-285 (1995) · Zbl 0868.73008
[8] Cowin, S. C.; Weinbaum, S.; Zeng, Y., A case for bone canaliculi as the anatomical site of strain generated potentials, J. Biomech., 28, 1281-1296 (1995)
[9] Cowin, S. C.; Yang, G., Averaging anisotropic elastic constant data, J. Elasticity, 46, 151-180 (1997) · Zbl 0902.73006
[10] Cowin, S. C., Bone poroelasticity, J. Biomech., 32, 218-238 (1999)
[11] Cowin, S. C.; Yang, G.; Mehrabadi, M. M., Bounds on the effective anisotropic elastic constants, J. Elasticity, 57, 1-24 (1999) · Zbl 0977.74052
[12] Cowin, S. C.; Yang, G., Material symmetry optimization by Kelvin modes, J. Eng. Math., 37, 27-43 (2000) · Zbl 0973.74064
[13] Cowin, S. C., A recasting of anisotropic poroelasticity in matrices of tensor components, Transport Porous Media, 50, 35-56 (2003)
[14] Cowin, S. C., Anisotropic poroelasticity: fabric tensor formulation, Mech. Mater., 36, 665-677 (2004)
[15] Cowin, S.C., Doty, S.B., 2006. Tissue Mechanics, Springer, New York, in press.; Cowin, S.C., Doty, S.B., 2006. Tissue Mechanics, Springer, New York, in press. · Zbl 1117.74002
[16] Darcy, H., Les Fontains Publiques de la Ville de Dijon (1856), Dalmont: Dalmont Paris
[17] de Boer, R., Theory of Porous Media (2000), Springer: Springer Berlin · Zbl 0961.74021
[18] Detournay, E.; Cheng, H.-D. A., Fundamentals of Poroelasticity, (Hudson, J. A., Comprehensive Rock Engineering: Principles, Practice & Projects (1993), Pergamon), 113-171
[19] Hill, R., The elastic behaviour of crystalline aggregate, Proc. Phys. Soc. A, 65, 349-354 (1952)
[20] Kachanov, M., Solids with cracks and non-spherical pores: proper parameters of defect density and effective elastic properties, Int. J. Fracture, 97, 1-32 (1999)
[21] Mehrabadi, M. M.; Cowin, S. C., Eigentensors of linear anisotropic elastic materials, Q.J. Mech. Appl. Math., 43, 15-41 (1990) · Zbl 0698.73002
[22] Mehrabadi, M. M.; Cowin, S. C.; Horgan, C. O., Strain energy bounds for linear anisotropic materials, J. Elasticity, 30, 191-196 (1993) · Zbl 0773.73013
[23] Mow, V. C.; Lai, W. L., Recent developments in synovial joint mechanics, SIAM Rev, 22, 275-317 (1980) · Zbl 0448.76110
[24] Pollack, S. R.; Petrov, N.; Salzstein, R.; Brankov, G.; Blagoeva, R., An anatomical model for streaming potentials in osteons, J. Biomech., 17, 627-636 (1984)
[25] Rice, J. R.; Cleary, M. P., Some basic stress diffusion solutions for fluid-saturated elastic porous media with compressible constituents, Rev. Geophys. Space Phys., 14, 227-241 (1976)
[26] Rudnicki, J. W., Effect of pore fluid diffusion on deformation and failure of rock, (Bazant, Z., Mechanics of Geomaterials (1985), Wiley: Wiley New York), 315-347
[27] Sevostianov, I.; Kachanov, M., Author’s response, J. Biomech., 34, 709-710 (2001)
[28] Shafiro, B.; Kachanov, M., Materials with fluid filled pores of various shapes: effective elastic properties and fluid pressure polarization, Int. J. Solids Structures, 34, 3517-3540 (1997) · Zbl 0942.74611
[29] Skempton, A. W., The pore pressure coefficients A and B, Géotechnique, 4, 143-147 (1954)
[30] Thompson, M.; Willis, J. R., A reformation of the equations of anisotropic poroelasticity, J. Appl. Mech., 58, 612-616 (1991) · Zbl 0754.73017
[31] Thomson, W. T., Laplace Transformation (1960), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ · Zbl 0041.43301
[32] Voigt, W., Lehrbuch der Kristallphysik (1928), Teubner: Teubner Leipzig · JFM 54.0929.03
[33] Weinbaum, S.; Cowin, S. C.; Zeng, Y., A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses, J. Biomech., 27, 339-360 (1994)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.