×

Polynomial chaos for multirate partial differential algebraic equations with random parameters. (English) Zbl 1171.65092

The authors use the technique of generalized polynomial chaos in order to solve periodic boundary value problems of multirate partial differential algebraic equations (MPDAEs). The coupled systems according to warped MPDAEs are considered in detail. An example base on warped MPDAEs is numerically analysed.

MSC:

65P20 Numerical chaos
35R60 PDEs with randomness, stochastic partial differential equations
35L50 Initial-boundary value problems for first-order hyperbolic systems
65N06 Finite difference methods for boundary value problems involving PDEs
65L80 Numerical methods for differential-algebraic equations
35R10 Partial functional-differential equations
Full Text: DOI

References:

[1] Augustin, F.; Gilg, A.; Paffrath, M.; Rentrop, P.; Wever, U., Polynomial chaos for the approximation of uncertainties: Chances and limits, Eur. J. Appl. Math., 19, 149-190 (2008) · Zbl 1148.65004
[2] Brachtendorf, H. G.; Welsch, G.; Laur, R.; Bunse-Gerstner, A., Numerical steady state analysis of electronic circuits driven by multi-tone signals, Electrical Engrg., 79, 103-112 (1996)
[3] Cao, Y.; Chen, Z.; Gunzburger, M., ANOVA expansions and efficient sampling methods for parameter dependent nonlinear PDEs, Int. J. Numer. Anal. Mod., 6, 256-273 (2009) · Zbl 1161.65336
[4] Ghanem, R. G.; Spanos, P. D., Stochastic Finite Elements (2003), Dover Publications Inc.: Dover Publications Inc. Mineola, New York · Zbl 0953.74608
[5] Günther, M.; Feldmann, U., CAD based electric circuit modeling in industry I: Mathematical structure and index of network equations, Surv. Math. Ind., 8, 97-129 (1999) · Zbl 0923.65039
[6] Kampowsky, W.; Rentrop, P.; Schmitt, W., Classification and numerical simulation of electric circuits, Surv. Math. Ind., 2, 23-65 (1992) · Zbl 0761.65059
[7] G.E. Karniadakis, C.H. Su, D. Xiu, D. Lucor, C. Schwab, R.A. Todor, Generalized polynomial chaos solution for differential equations with random inputs, Research Report No. 2005-01, ETH Zürich, 2005; G.E. Karniadakis, C.H. Su, D. Xiu, D. Lucor, C. Schwab, R.A. Todor, Generalized polynomial chaos solution for differential equations with random inputs, Research Report No. 2005-01, ETH Zürich, 2005
[8] Narayan, O.; Roychowdhury, J., Analyzing oscillators using multitime PDEs, IEEE Trans. CAS I, 50, 894-903 (2003) · Zbl 1368.35012
[9] Pulch, R., Multi time scale differential equations for simulating frequency modulated signals, Appl. Numer. Math., 53, 421-436 (2005) · Zbl 1069.65103
[10] Pulch, R., Warped MPDAE models with continuous phase conditions, (Di Bucchianico, A.; Mattheij, R. M.M.; Peletier, M. A., Progress in Industrial Mathematics at ECMI 2004. Progress in Industrial Mathematics at ECMI 2004, Mathematics in Industry, vol. 8 (2006), Springer: Springer Berlin), 179-183 · Zbl 1308.94125
[11] Pulch, R., Transformation qualities of warped multirate partial differential algebraic equations, (Breitner, M.; Denk, G.; Rentrop, P., From Nano to Space - Applied Mathematics Inspired by Roland Bulirsch (2008), Springer: Springer Berlin), 27-42 · Zbl 1162.35338
[12] Pulch, R.; Günther, M., A method of characteristics for solving multirate partial differential equations in radio frequency applications, Appl. Numer. Math., 42, 397-409 (2002) · Zbl 0999.65099
[13] Pulch, R.; Günther, M.; Knorr, S., Multirate partial differential algebraic equations for simulating radio frequency signals, Eur. J. Appl. Math., 18, 709-743 (2007) · Zbl 1135.94007
[14] Roychowdhury, J., Analyzing circuits with widely-separated time scales using numerical PDE methods, IEEE Trans. CAS I, 48, 578-594 (2001) · Zbl 1001.94060
[15] Xiu, D., Efficient collocation approach for parametric uncertainty analysis, Comm. Comput. Phys., 2, 293-309 (2007) · Zbl 1164.65302
[16] Xiu, D.; Hesthaven, J. S., High order collocation methods for differential equations with random inputs, SIAM J. Sci. Comput., 27, 1118-1139 (2005) · Zbl 1091.65006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.