×

The bounding genera and \(w\)-invariants. (English) Zbl 1171.57030

Let \(\Gamma\) be a nonsingular symmetric bilinear form over \(\mathbb{Z}\). A homology 3-sphere \(\Sigma\) is said to bound the form \(\Gamma\) if and only if \(\Sigma\) bounds a compact, oriented, homologically 1-connected smooth 4-manifold \(W\) whose intersection form defined on \(H_2(W)\) is isomorphic to \(\Gamma\). Let \(H\) be the hyperbolic form, i.e., the intersection form of \(S^2\times S^2\). For the paper under review the basic definition is following. The bounding genus \(|\Sigma|\) of \(\Sigma\) is a minimum of \(\{n\mid\Sigma\) bounds \(nH\}\) if the Rohlin invariant \(\mu(\Sigma)\) of \(\Sigma\) is zero. In case \(\mu(\Sigma)=1, |\Sigma|=\infty\). It was introduced by Y. Matsumoto in [J. Fac. Sci. Univ. Tokyo Sect. IA. Math. 29, 287–318 (1982; Zbl 0506.57006)]. The second important object of the paper under review is the \(\omega\)-invariant. Let \((\Sigma,X,c)\) be a triple composed of a homology 3-sphere \(\Sigma\), a compact smooth spin 4-\(V\)-manifold \(X\) [see I. Satake, J. Math. Soc. Japan 9, 464–492 (1957; Zbl 0080.37403)] with boundary \(\partial X=\Sigma\), and \(V\)-spin\(^c\) structure \(c\) on \(X\). We define \(\omega(\Sigma,X,c):=\text{in}d_VD(X \cup_\Sigma W)+\frac{\text{Sign}(W)} {8}\), where \(W\) is a smooth spin 4-manifold with boundary \(\partial W=\Sigma\) and \(\text{ind}_VD(\;)\) is the \(V\)-index of the positive chiral Dirac operator. The main results of the paper try to compare the value of \(|\Sigma|\) with \(\omega(\Sigma,X, c)\). The last four pages illustrate the results on some Brieskorn 3-spheres.

MSC:

57R57 Applications of global analysis to structures on manifolds
55N22 Bordism and cobordism theories and formal group laws in algebraic topology
58J20 Index theory and related fixed-point theorems on manifolds
57R80 \(h\)- and \(s\)-cobordism
57M50 General geometric structures on low-dimensional manifolds
Full Text: DOI

References:

[1] Selman Akbulut and Robion Kirby, Mazur manifolds, Michigan Math. J. 26 (1979), no. 3, 259 – 284. · Zbl 0443.57011
[2] Andrew J. Casson and John L. Harer, Some homology lens spaces which bound rational homology balls, Pacific J. Math. 96 (1981), no. 1, 23 – 36. · Zbl 0483.57017
[3] Ronald Fintushel and Ronald J. Stern, Pseudofree orbifolds, Ann. of Math. (2) 122 (1985), no. 2, 335 – 364. · Zbl 0602.57013 · doi:10.2307/1971306
[4] Shinji Fukuhara, On the invariant for a certain type of involutions of homology 3-spheres and its application, J. Math. Soc. Japan 30 (1978), no. 4, 653 – 665. · Zbl 0389.57011 · doi:10.2969/jmsj/03040653
[5] Y. Fukumoto, On an invariant of plumbed homology 3-spheres, J. Math. Kyoto Univ. 40 (2000), no. 2, 379 – 388. · Zbl 0973.57015
[6] Y. Fukumoto, Plumbed homology 3-spheres bounding acyclic 4-manifolds, J. Math. Kyoto Univ. 40 (2000), no. 4, 729 – 749. · Zbl 0987.57014
[7] Y. Fukumoto and M. Furuta, Homology 3-spheres bounding acyclic 4-manifolds, Math. Res. Lett. 7 (2000), no. 5-6, 757 – 766. · Zbl 0971.57026 · doi:10.4310/MRL.2000.v7.n6.a8
[8] Yoshihiro Fukumoto, Mikio Furuta, and Masaaki Ue, \?-invariants and Neumann-Siebenmann invariants for Seifert homology 3-spheres, Topology Appl. 116 (2001), no. 3, 333 – 369. · Zbl 0991.57019 · doi:10.1016/S0166-8641(00)00103-6
[9] M. Furuta, Monopole equation and the \frac{11}8-conjecture, Math. Res. Lett. 8 (2001), no. 3, 279 – 291. · Zbl 0984.57011 · doi:10.4310/MRL.2001.v8.n3.a5
[10] Tetsuro Kawasaki, The index of elliptic operators over \?-manifolds, Nagoya Math. J. 84 (1981), 135 – 157. · Zbl 0437.58020
[11] Yukio Matsumoto, On the bounding genus of homology 3-spheres, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 29 (1982), no. 2, 287 – 318. · Zbl 0506.57006
[12] Walter D. Neumann, An invariant of plumbed homology spheres, Topology Symposium, Siegen 1979 (Proc. Sympos., Univ. Siegen, Siegen, 1979), Lecture Notes in Math., vol. 788, Springer, Berlin, 1980, pp. 125 – 144.
[13] Walter D. Neumann, A calculus for plumbing applied to the topology of complex surface singularities and degenerating complex curves, Trans. Amer. Math. Soc. 268 (1981), no. 2, 299 – 344. · Zbl 0546.57002
[14] Walter D. Neumann and Don Zagier, A note on an invariant of Fintushel and Stern, Geometry and topology (College Park, Md., 1983/84) Lecture Notes in Math., vol. 1167, Springer, Berlin, 1985, pp. 241 – 244. · Zbl 0589.57016 · doi:10.1007/BFb0075227
[15] Ichirô Satake, The Gauss-Bonnet theorem for \?-manifolds, J. Math. Soc. Japan 9 (1957), 464 – 492. · Zbl 0080.37403 · doi:10.2969/jmsj/00940464
[16] Nikolai Saveliev, Fukumoto-Furuta invariants of plumbed homology 3-spheres, Pacific J. Math. 205 (2002), no. 2, 465 – 490. · Zbl 1053.57012 · doi:10.2140/pjm.2002.205.465
[17] L. Siebenmann, On vanishing of the Rohlin invariant and nonfinitely amphicheiral homology 3-spheres, Topology Symposium, Siegen 1979 (Proc. Sympos., Univ. Siegen, Siegen, 1979), Lecture Notes in Math., vol. 788, Springer, Berlin, 1980, pp. 172 – 222.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.