×

Characterizations of derivations and Jordan derivations on Banach algebras. (English) Zbl 1171.47030

Let \(\mathcal A\) be a Banach algebra and \(\mathcal M\) be an \(\mathcal A\)-bimodule. An element \(W\) in \(\mathcal A\) is called a left (resp., right) separating point of \(\mathcal M\) if \(WM=0\) (resp., \(MW=0\)) for \(M\in\mathcal M\) implies that \(M=0\). It is shown in the paper that if \(W\) is a left or right separating point of \(\mathcal M\) and \(\delta:{\mathcal M}\to{\mathcal M}\) is a continuous linear map, then the following are equivalent: (1) \(\delta(AB)=\delta(A)B+A\delta(B)\) for all \(A,B\in{\mathcal A}\) with \(AB=W\); (2) \(\delta\) is a Jordan derivation and satisfies \(\delta(WA)=\delta(W)A+W\delta(A)\) and \(\delta(AW)=\delta(A)W+A\delta(W)\) for all \(A\in\mathcal A\).
As another result, it is proved that, if \(P\) is a nontrivial idempotent element in \(\mathcal A\) which is faithful with respect to \(\mathcal M\) and \(\delta:{\mathcal M}\to{\mathcal M}\) is a linear map which satisfies \(\delta(AB)=\delta(A)B+A\delta(B)\) whenever \(AB=P\) for \(A,B\in\mathcal A\), then \(\delta\) is a derivation.

MSC:

47B47 Commutators, derivations, elementary operators, etc.
47B48 Linear operators on Banach algebras
Full Text: DOI

References:

[1] Benkovic˘, D., Jordan derivations and antiderivations of triangular matricers, Linear Algebra Appl., 397, 235-244 (2005) · Zbl 1072.15021
[2] Bres˘ar, M., Joradan derivations revisited, Math. Proc. Cambridge Philos. Soc., 139, 411-425 (2005) · Zbl 1092.16020
[3] Bres˘ar, M., Characterizing homomorphisms, derivations and multipliers in rings with idempotents, Proc. Roy. Soc. Edinburgh Sect. A, 137, 9-21 (2007) · Zbl 1130.16018
[4] Chebotar, M. A.; Ke, W.-F.; Lee, P.-H., Maps characterized by action on zero products, Pacific J. Math., 216, 217-228 (2004) · Zbl 1078.16034
[5] K. Davidson, Nest algebras, Pitman Res. Notes, Math. Ser. 191, Longman Sci. Tech., New York, 1988.; K. Davidson, Nest algebras, Pitman Res. Notes, Math. Ser. 191, Longman Sci. Tech., New York, 1988. · Zbl 0669.47024
[6] Hou, J. C.; Qi, X. F., Additive maps derivable at some points on \(J\)-subspace lattice algebras, Linear Algebra Appl., 429, 1851-1863 (2008) · Zbl 1153.47062
[7] Jing, W.; Lu, S. J.; Li, P. T., Characterization of derivations on some operator algebras, Bull. Austral. Math. Soc., 66, 227-232 (2002) · Zbl 1035.47019
[8] Johnson, B. E., Symmetric amenability and the nonexistence of Lie and Jordan derivations, Math. Proc. Cambridge Philos. Soc., 120, 455-473 (1996) · Zbl 0888.46024
[9] Lu, F., The Jordan struture of CSL algebras, Studia Math., 190, 283-299 (2009) · Zbl 1156.47058
[10] Zhu, J.; Xiong, C. P., Generalized derivable mappings at zero point on nest algebras, Acta Math. Sinica, 45, 783-788 (2002) · Zbl 1015.47052
[11] Zhu, J.; Xiong, C. P., Generalized derivable mappings at zero point on some reflexive operator algebras, Linear Algebra Appl., 397, 367-379 (2005) · Zbl 1067.47048
[12] Zhu, J.; Xiong, C. P., Derivable mappings at unit operator on nest algebras, Linear Algebra Appl., 422, 721-735 (2007) · Zbl 1140.47059
[13] Zhu, J., All-derivable points of operator algebras, Linear Algebra Appl., 427, 1-5 (2007) · Zbl 1128.47062
[14] Zhu, J.; Xiong, C. P., All-derivable points in continuous nest algebras, J. Math. Anal. Appl., 340, 845-853 (2008) · Zbl 1134.47054
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.