×

A local families index formula for \({\overline{\partial}}\)-operators on punctured Riemann surfaces. (English) Zbl 1171.30017

The paper under review is a sequel to the paper by the same authors [Int. Math. Res. Not. 2009, No. 4, 625–697 (2009; Zbl 1184.58008)]. Using an index formula obtained in the paper cited, along with heat kernel methods obtained by B. Vaillant in his PhD dissertation (Bonn, 2001), the authors obtain a local index formula for families of \(\overline{\partial}\)-operators on the Teichmüller universal curve of Riemann surfaces of genus \(g\) with \(n\) punctures. The formula also holds on the orbifold moduli space of such surfaces, where it can be written in terms of Mumford-Morita-Miller classes. The degree two part of the formula gives the curvature of the corresponding determinant line bundle equipped with the Quillen connection, a result originally obtained by Takhtajan and Zograf. The authors also note an interpretation of their local index formula as a local version of the Grothendieck-Riemann-Roch theorem.

MSC:

30F60 Teichmüller theory for Riemann surfaces
32G15 Moduli of Riemann surfaces, Teichmüller theory (complex-analytic aspects in several variables)
58J20 Index theory and related fixed-point theorems on manifolds

Citations:

Zbl 1184.58008

References:

[1] Ahlfors L.: Some remarks on Teichmüller’s space of Riemann surfaces. Ann. Math. 74, 171–191 (1961) · Zbl 0146.30602 · doi:10.2307/1970309
[2] Albin P., Rochon F.: Family index for manifolds with hyperbolic cusp singularities. IMRN 2009, 625–697 (2009) · Zbl 1184.58008
[3] Albin, P., Rochon, F.: Some index formulae on the moduli space of stable parabolic vector bundles. preprint, available at http://arxiv.org/abs/0812.2223v1[math.DG] , 2008 · Zbl 1318.58011
[4] Arbarello E., Cornalba M.: Combinatorial and algebro geometric cohomology classes on the moduli space of curves. J. Alg. Geom. 5, 705–749 (1996) · Zbl 0886.14007
[5] Berline N., Getzler E., Vergne M.: Heat Kernels and Dirac Operators. Springer-Verlag, Berlin (1992) · Zbl 0744.58001
[6] Bini G.: Generalized Hodge classes on the moduli space of curve. Cont. Alg. Geom. 44(2), 559–565 (2003) · Zbl 1066.14029
[7] Bismut J.M., Cheeger J.: {\(\eta\)}-invariants and their adiabatic limits. J. Amer. Math. Soc. 2(1), 33–70 (1989) · Zbl 0671.58037
[8] Bismut J.M., Freed D.S.: The analysis of elliptic families. I. metric and connections on the determinant bundles. Commun. Math. Phys. 106, 159–176 (1986) · Zbl 0657.58037 · doi:10.1007/BF01210930
[9] Bismut J.M., Gillet H., Soulé C.: Analytic torsion and holomorphic determinant bundles. I. Bott-Chern forms and analytic torsion. Commun. Math. Phys. 115, 49–78 (1988) · Zbl 0651.32017 · doi:10.1007/BF01238853
[10] Bismut J.M., Gillet H., Soulé C.: Analytic torsion and holomorphic determinant bundles. II. Direct images and Bott-Chern forms. Commun. Math. Phys. 115, 79–126 (1988) · Zbl 0651.32017 · doi:10.1007/BF01238854
[11] Bismut J.M., Gillet H., Soulé C.: Analytic torsion and holomorphic determinant bundles. III. Quillen metrics on holomorphic determinants. Commun. Math. Phys. 115, 301–351 (1988) · Zbl 0651.32017 · doi:10.1007/BF01466774
[12] Borthwick D., Judge C., Perry P.A.: Selberg’s zeta function and the spectral geometry of geometrically finite hyperbolic surfaces. Comment. Math. Helv. 80(3), 483–515 (2005) · Zbl 1079.58023 · doi:10.4171/CMH/23
[13] D’Hoker E., Phong D.H.: On determinants of Laplacians on Riemann surfaces. Commun. Math. Phys. 104, 537–545 (1986) · Zbl 0599.30073 · doi:10.1007/BF01211063
[14] Efrat I.: Determinants of Laplacians on surfaces of finite volume. Commun. Math. Phys. 119, 443–451 (1988) · Zbl 0661.10038 · doi:10.1007/BF01218082
[15] Efrat I.: Erratum: Determinants of Laplacians on surfaces of finite volume. Commun. Math. Phys. 138, 607 (1991) · Zbl 0722.11029 · doi:10.1007/BF02102044
[16] Griffiths P., Harris J.: Principle of Algebraic Geometry. Wiley, New York (1994) · Zbl 0836.14001
[17] Hassell A.: Analytic surgery and analytic torsion. Commun. Anal. Geom. 6(2), 255–289 (1998) · Zbl 0926.58004
[18] Hubbard J.H.: Teichmüller Theory and Applications to Geometry, Topology, and Dynamics Volume I: Teichmüller Theory. Ithaca NY, Matrix Editions (2006) · Zbl 1102.30001
[19] Lawson H.B., Michelsohn M.-L.: Spin Geometry. Princeton Univ. Press, Princeton, NJ (1989) · Zbl 0688.57001
[20] Leichtnam E., Mazzeo R., Piazza P.: The index of Dirac operators on manifolds with fibered boundaries. Bull. Belgian Math. Soc. 13(5), 845–855 (2006) · Zbl 1126.58009
[21] Mazzeo R., Melrose R.B.: Pseudodifferential operators on manifolds with fibred boundaries. Asian J. Math. 2(4), 833–866 (1998) · Zbl 1125.58304
[22] Melrose, R.B.: The Atiyah-Patodi-Singer Index Theorem. Research notes in mathematics, Wellesley, MA: A.K. Peters, 1993 · Zbl 0796.58050
[23] Melrose R.B.: The eta invariant and families of pseudodifferential operators. Math. Res. Lett. 2(5), 541–561 (1995) · Zbl 0934.58025
[24] Melrose R.B., Piazza P.: Families of Dirac operators, boundaries and the b-calculus. J. Diff. Geom. 46(1), 99–180 (1997) · Zbl 0955.58020
[25] Melrose R.B., Piazza P.: An index theorem for families of Dirac operators on odd-dimensional manifolds with boundary. J. Diff. Geom. 46(2), 287–334 (1997) · Zbl 0920.58053
[26] Müller W.: Spectral geometry and scattering theory for certain complete surfaces of finite volume. Invent. Math. 109, 265–305 (1992) · Zbl 0772.58063 · doi:10.1007/BF01232028
[27] Mumford, D.: Towards an Enumerative Geometry of the Moduli Space of Curves. Arithmetic and Geometry Part II, M. Artin, J. Tate, eds., Bosel-Boston: Birkhäuser 1983, pp. 271–328 · Zbl 0554.14008
[28] Piazza P.: Determinant bundles, manifolds with boundary and surgery. Commun. Math. Phys. 178(3), 597–626 (1996) · Zbl 0859.58030 · doi:10.1007/BF02108817
[29] Sarnak P.: Determinants of Laplacians. Commun. Math. Phys. 110(1), 113–120 (1987) · Zbl 0618.10023 · doi:10.1007/BF01209019
[30] Takhtajan L.A., Zograf P.G.: A local index theorem for families of \({\overline{\partial}}\) -operators on punctured Riemann surfaces and a new Kähler metric on their moduli spaces. Commun. Math. Phys. 137(2), 399–426 (1991) · Zbl 0725.58043 · doi:10.1007/BF02431886
[31] Vaillant, B.: Index and spectral theory for manifolds with generalized fibred cusps. Ph.D. dissertation, Bonner Math. Schriften 344, Univ. Bonn., Mathematisches Institut, Bonn (2001), available online at http://arXiv.org/abs/math/0102072v1[math.DG] , 2001
[32] Weng L.: {\(\Omega\)}-admissible theory II. Deligne pairings over moduli spaces of punctured Riemann surfaces. Math. Ann. 320, 239–283 (2001) · Zbl 1036.14013 · doi:10.1007/PL00004473
[33] Witten E.: Two-dimensional gravity and intersection theory on moduli space. Surv. Diff. Geo. 1, 243–310 (1991) · Zbl 0757.53049
[34] Wolpert S.: Chern forms and the Riemann tensor for the moduli space of curves. Invent. Math. 85, 119–145 (1986) · Zbl 0595.32031 · doi:10.1007/BF01388794
[35] Wolpert S.: Cusps and the family hyperbolic metric. Duke Math. J. 138(3), 423–443 (2007) · Zbl 1144.14029 · doi:10.1215/S0012-7094-07-13833-X
[36] Zhang W.: Circle bundles, adiabatic limits of {\(\eta\)}-invariants and Rokhlin congruences. Ann. Inst. Fourier 44(1), 249–270 (1994) · Zbl 0792.57012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.