×

Constitutive and geometric nonlinear models for the seismic analysis of RC structures with energy dissipators. (English) Zbl 1170.74320

Summary: Nowadays, the use of energy dissipating devices to improve the seismic response of RC structures constitutes a mature branch of the innovative procedures in earthquake engineering. However, even though the benefits derived from this technique are well known and widely accepted, the numerical methods for the simulation of the nonlinear seismic response of RC structures with passive control devices is a field in which new developments are continuously preformed both in computational mechanics and earthquake engineering. In this work, a state of the art of the advanced models for the numerical simulation of the nonlinear dynamic response of RC structures with passive energy dissipating devices subjected to seismic loading is made. The most commonly used passive energy dissipating devices are described, together with their dissipative mechanisms as well as with the numerical procedures used in modeling RC structures provided with such devices. The most important approaches for the formulation of beam models for RC structures are reviewed, with emphasis on the theory and numerics of formulations that consider both geometric and constitutive sources on nonlinearity. In the same manner, a more complete treatment is given to the constitutive nonlinearity in the context of fiber-like approaches including the corresponding cross sectional analysis. Special attention is paid to the use of damage indices able of estimating the remaining load carrying capacity of structures after a seismic action. Finally, nonlinear constitutive and geometric formulations for RC beam elements are examined, together with energy dissipating devices formulated as simpler beams with adequate constitutive laws. Numerical examples allow to illustrate the capacities of the presented formulations.

MSC:

74E30 Composite and mixture properties
74Q15 Effective constitutive equations in solid mechanics
74R99 Fracture and damage
74S05 Finite element methods applied to problems in solid mechanics
74H45 Vibrations in dynamical problems in solid mechanics
74-02 Research exposition (monographs, survey articles) pertaining to mechanics of deformable solids

Software:

IDARC2D

References:

[1] Ahmadi HR, Muhr AH (1997) Modelling dynamic properties of filled rubber. Plast Rubber Compos Process Appl 26:451–461
[2] Aiken I (1996) Passive energy dissipation hardware and applications. In: Proceedings, Los Angeles county and SEAOSC symposium on passive energy dissipation systems for new and existing buildings, Los Angeles, July 1996
[3] Aiken I (1998) Testing of seismic isolators and dampers–considerations and limitations. In: Proceedings, structural engineering world congress, San Francisco, California, 1998
[4] Aiken ID, Kelly JM (1996) Cyclic dynamic testing of fluid viscous dampers. In: Proceedings, Caltrans fourth seismic research workshop, California Department of Transportation, Sacramento, California, USA, July 1996
[5] Aiken ID, Kelly JM, Pall AS (1968) Seismic response of a nine-story steel frame with friction damped cross-bracing. In: Proceedings, ninth world conference on earthquake engineering, Tokyo and Kyoto, Japan, August 1988
[6] Akiyama H (2003) Metodología de proyecto sismoresistente de edificios basada en el balance energético. Editorial Reverté SA, 2003
[7] Antman SS (1991) Nonlinear problems of elasticity. Springer, New York
[8] Antman SS (1996) Dynamical problems for geometrically exact theories of nonlinearly viscoelastic rods. J Nonlinear Sci 6:1–18 · Zbl 0845.73034 · doi:10.1007/BF02433808
[9] Arfiadi Y, Hadi MNS (2000) Passive and active control of three-dimensional buildings. Earthquake Eng Struct Dyn 29:377–396 · doi:10.1002/(SICI)1096-9845(200003)29:3<377::AID-EQE911>3.0.CO;2-C
[10] Argyris J (1982) An excursion into large rotations. Comput Methods Appl Mech Eng 32:85–155 · Zbl 0505.73064 · doi:10.1016/0045-7825(82)90069-X
[11] Argyris J, Poterasu VF (1993) Large rotations revisited application of Lie algebra. Comput Methods Appl Mech Eng 103:11–42 · Zbl 0767.70003 · doi:10.1016/0045-7825(93)90040-5
[12] Armero F (1999) Large-scale modeling of localized dissipative mechanisms in a local continuum: applications to the numerical simulation of strain localization in rate-dependent inelastic solids. Mech Cohes-Frict Mater 4:101–131 · doi:10.1002/(SICI)1099-1484(199903)4:2<101::AID-CFM78>3.0.CO;2-Y
[13] Armero F, Ehrlich D (2004) An analysis of strain localization and wave propagation in plastic models of beams at failure. Comput Methods Appl Mech Eng 193:3129–3171 · Zbl 1060.74601 · doi:10.1016/j.cma.2003.07.015
[14] Armero F, Ehrlich D (2005) Numerical modeling of softening hinges in the Euler-Bernoulli beams. Comput Struct 84:641–656 · Zbl 1109.74358 · doi:10.1016/j.compstruc.2005.11.010
[15] Armero F, Ehrlich D (2005) Finite element methods for the analysis of softening plastic hinges in beams and frames. Comput Mech 35:237–264 · Zbl 1109.74358 · doi:10.1007/s00466-004-0575-z
[16] Armero F, Romero I (2001) On the formulation of high-frequency dissipative time-stepping algorithms for nonlinear dynamics. Part II: second-order methods. Comput Methods Appl Mech Eng 190:6783–6824 · Zbl 1068.74022 · doi:10.1016/S0045-7825(01)00233-X
[17] Armero F, Romero I (2003) Energy–dissipating momentum–conserving time–stepping algorithms for the dynamic of nonlinear Cosserat rods. Comput Mech 31:3–26 · Zbl 1038.74670 · doi:10.1007/s00466-002-0389-9
[18] Asano M, Masahiko H, Yamamoto M (2001) The experimental study on viscoelastic material dampers and the formulation of analytical model. In: Proceedings of the 12th world conference on earthquake engineering, Paper no 1535
[19] Atluri SN, Cazzani A (1995) Rotations in computational solid mechanics. Arch Comput Methods Eng 2:49–138 · doi:10.1007/BF02736189
[20] Atluri SN, Vasudevan S (2001) A consistent theory of finite stretches and finite rotations, in space–curved beams of arbitrary cross section. Comput Mech 27:271–281 · Zbl 1011.74041 · doi:10.1007/s004660100234
[21] Ayoub A, Filippou FC (2000) Mixed formulation of nonlinear steel-concrete composite beam element. J Struct Eng 126:0371–0381 · doi:10.1061/(ASCE)0733-9445(2000)126:3(371)
[22] Bairan Garcia JM, Mari Bernat AR (2006) Coupled model for the non-linear analysis of anisotropic sections subjected to general 3D loading. Part 1: theoretical formulation. Comput Struct 84:2254–2263 · doi:10.1016/j.compstruc.2006.08.036
[23] Barbat AH, Bozzo LM (1997) Seismic analysis of base isolated buildings. Arch Comput Methods Eng 4(2):153–192 · doi:10.1007/BF03020128
[24] Barbat AH, Cervera M, Hanganu A, Cirauqui C, Oñate E (1998) Failure pressure evaluation of the containment building of a large dry nuclear power plant. Nucl Eng Des 180:251–270 · doi:10.1016/S0029-5493(97)00329-4
[25] Barbat AH, Oller S, Hanganu A, Oñate E (1997) Viscous damage model for Timoshenko beam structures. Int J Solids Struct 34(30):3953–3976 · Zbl 0942.74633 · doi:10.1016/S0020-7683(97)00004-8
[26] Barbat AH, Oller S, Mata P, Vielma JC (2007) Computational simulation of the seismic response of buildings with energy dissipating devices. In: Proceedings of the COMPDYN 2007, first international conference on computational methods in structural dynamics and earthquake engineering, Rethymno, Crete, Greece, June 13th–15th, 2007
[27] Barbat AH, Rodellar J, Ryan E, Molinares N (1993) Comportamiento sísmico de edificios con un sistema no lineal de control hibrido. Rev Int Métodos Numér Cálcy Diseño Ing 9:201–220
[28] Barbat AH, Rodellar J, Ryan EP, Molinares N (1995) Active control of nonlinear base-isolated buildings. J Eng Mech 121(6):676–684 · doi:10.1061/(ASCE)0733-9399(1995)121:6(676)
[29] Barham WS, Aref AJ, Dargush GF (2005) Flexibility-based large increment method for analysis of elastic-perfectly plastic beam structures. Comput Struct 83:2453–2462 · doi:10.1016/j.compstruc.2005.03.037
[30] Barroso LR, Breneman SE, Smith HA (2002) Performance evaluation of controlled steel frames under multilevel seismic loads. J Struct Eng 128(11):1368–1378 · doi:10.1061/(ASCE)0733-9445(2002)128:11(1368)
[31] Bathe KJ (1996) Finite element procedures. Prentice-Hall, Englewood Cliffs
[32] Bathe KJ, Bolourchi S (1979) Large displacement analysis of three-dimensional beam structures. Int J Numer Methods Eng 14:961–986 · Zbl 0404.73070 · doi:10.1002/nme.1620140703
[33] Batista Marques de Sousa J Jr, Barreto Caldas R (2005) Numerical analysis of composite steel–concrete columns of arbitrary cross section. J Eng Mech 131(11):1721–1730
[34] Battini JM, Pacoste C (2002) Co-rotational beam elements with warping effects in instability problems. Comput Methods Appl Mech Eng 191:1755–1789 · Zbl 1098.74680 · doi:10.1016/S0045-7825(01)00352-8
[35] Bauchau OA, Choi JI (2003) The vector parameterization of motion. Nonlinear Dyn 33:165–188 · Zbl 1038.70002 · doi:10.1023/A:1026008414065
[36] Bauchau OA, Theron NJ (1996) Energy decaying scheme for non-linear beam models. Comput Methods Appl Mech Eng 134:37–56 · Zbl 0918.73311 · doi:10.1016/0045-7825(96)01030-4
[37] Bauchau O, Trainelli L (2003) The vectorial parametrization of rotation. Nonlinear Dyn 32:71–92 · Zbl 1062.70505 · doi:10.1023/A:1024265401576
[38] Bayrak O, Sheikh SA (2001) Plastic hinge analysis. J Struct Eng 127(9):1092–1100 · doi:10.1061/(ASCE)0733-9445(2001)127:9(1092)
[39] Bentz EC (2000) Sectional analysis of reinforced concrete members. PhD thesis, University of Toronto
[40] Betsch P, Menzel A, Stein E (1998) On the parametrization of finite rotations in computational mechanics. A classification of concepts with application to smooth shells. Comput Methods Appl Mech Eng 155:273–305 · Zbl 0947.74060 · doi:10.1016/S0045-7825(97)00158-8
[41] Betsch P, Steinmann P (2002) Frame-indifferent beam finite element based upon the geometrically exact beam theory. Int J Numer Methods Eng 54:1775–1788 · Zbl 1053.74041 · doi:10.1002/nme.487
[42] Betsch P, Steinmann P (2003) Constrained dynamics of geometrically exact beams. Comput Mech 31:49–59 · Zbl 1038.74580 · doi:10.1007/s00466-002-0392-1
[43] Blandford GE (1996) Large deformation analysis of inelastic space truss structures. J Struct Eng 122(4):407–415 · doi:10.1061/(ASCE)0733-9445(1996)122:4(407)
[44] Bottasso CL, Borri M (1997) Energy preserving/decaying schemes for non-linear beam dynamics using the helicoidal approximation. Comput Methods Appl Mech Eng 143:393–415 · Zbl 0896.73070 · doi:10.1016/S0045-7825(96)01161-9
[45] Bottasso CL, Borri M, Trainelli L (2001) Integration of elastic multibody systems by invariant conserving/dissipating algorithms. II. Numerical schemes and applications. Comput Methods Appl Mech Eng 190:3701–3733 · Zbl 0990.74024 · doi:10.1016/S0045-7825(00)00285-1
[46] Braga F, Faggella M, Gigliotti R, Laterza M (2005) Nonlinear dynamic response of HDRB and hybrid HDRB-friction sliders base isolation systems. Bull Earthquake Eng 3:333–353 · doi:10.1007/s10518-005-1242-2
[47] Bratina S, Saje M, Planinc I (2004) On materially and geometrically non-linear analysis of reinforced concrete planar frames. Int J Solids Struct 41:7181–7207 · Zbl 1181.74070 · doi:10.1016/j.ijsolstr.2004.06.004
[48] Briseghella L, Majorana CE, Pellegrino C (1999) Conservation of angular momentum and energy in the integration of non-linear dynamic equations. Comput Methods Appl Mech Eng 179:247–263 · Zbl 0953.70002 · doi:10.1016/S0045-7825(99)00062-6
[49] Bruneau M, Vian D Experimental investigation of P–{\(\Delta\)} effects to collapse during earthquakes. In: 12th European conference on earthquake engineering, Elsevier Science Ltd., Amsterdam, Paper Ref. 021
[50] Budd CJ, Iserles A (1999) Geometric integration: numerical solution of differential equations on manifolds. R Soc 357:945–956 · Zbl 0933.65142
[51] Buonsanti M, Royer-Carfagni G (2003) From 3-D nonlinear elasticity theory to 1-D bars with nonconvex energy. J Elast 70:87–100 · Zbl 1073.74014 · doi:10.1023/B:ELAS.0000005633.22491.af
[52] Car E (2000) Modelo constitutivo continuo para el estudio del comportamiento mecánico de los materiales compuestos. PhD thesis, Universidad Politécnica de Cataluña
[53] Cardona A, Gerardin M (1988) A beam finite element non-linear theory with finite rotations. Int J Numer Methods Eng 26:2403–2438 · Zbl 0662.73049 · doi:10.1002/nme.1620261105
[54] Cardona A, Huespe A (1999) Evaluation of simple bifurcation points and post-critical path in large finite rotations problems. Comput Methods Appl Mech Eng 175:137–156 · Zbl 0953.70007 · doi:10.1016/S0045-7825(98)00365-X
[55] Celledoni E, Owren B (2003) Lie group methods for rigid body dynamics and time integration on manifolds. Comput Methods Appl Mech Eng 192:421–438 · Zbl 1018.70007 · doi:10.1016/S0045-7825(02)00520-0
[56] Cesnik CES, Sutyrint VG, Hodges DH (1988) Refined theory of composite beams: the role of short-wavelength extrapolation. Int J Solids Struct 33(10):1387–1408 · Zbl 0926.74058 · doi:10.1016/0020-7683(95)00109-3
[57] Clark P, Aiken I, Ko E, Kasai K, Kimura I (1999) Design procedures for buildings incorporating hysteretic seismic devices. In: Proceedings, 68th annual convention Santa Barbara, California, Structural Engineering Association of California, October 1999
[58] Cocchetti G, Maier G (2003) Elastic-plastic and limit-state analyses of frames with softening plastic–hinge models by mathematical programming. Int J Solids Struct 40:7219–7244 · Zbl 1065.74039 · doi:10.1016/S0020-7683(03)00363-9
[59] Coleman J, Spacone E (2001) Localization issues in force-based frame elements. J Struct Eng 127(11):1257–1265 · doi:10.1061/(ASCE)0733-9445(2001)127:11(1257)
[60] Connor JJ, Wada A, Iwata M, Huang YH (1997) Damage-controlled structures. I: preliminary design methodology for seismically active regions. J Struct Eng 123(4):423–431 · doi:10.1061/(ASCE)0733-9445(1997)123:4(423)
[61] Cosenza E, Manfredy G (2000) Damage indices and damage measures. Progress Struct Eng Mater 2:50–59 · doi:10.1002/(SICI)1528-2716(200001/03)2:1<50::AID-PSE7>3.0.CO;2-S
[62] Crisfield MA (1998) Non-linear finite element analysis of solids and structures, vol 1&2. Willey, New York
[63] Crisfield MA, Galvanetto U, Jelenic G (1997) Dynamics of 3-D co-rotational beams. Comput Mech 20:507–519 · Zbl 0904.73076 · doi:10.1007/s004660050271
[64] Crisfield MA, Jelenic G (1999) Objectivity of strain measures in the geometrically exact three-dimensional beam theory and its finite-element implementation. R Soc 455:1125–1147 · Zbl 0926.74062
[65] Crisfield MA, Wills J (1988) Solution strategies and softening materials. Comput Methods Appl Mech Eng 66:267–289 · Zbl 0618.73035 · doi:10.1016/0045-7825(88)90002-3
[66] CSI analysis reference manual for SAP200r®, ETABs®, and SAFE. Computers and Structures, Inc., Berkeley, California, USA, 2004
[67] Das S, Hadi MNS (1996) Non-linear finite element analysis of reinforced concrete members using MSC/NASTRAN. In: MSC world users conference, Newport Beach, CA, June 1996
[68] Davenne L (2004) Macro-element analysis in earthquake engineering. In: Multi-physics and multi-scale computer models in non-linear analysis and optimal design of engineering structures under extreme conditions, Slovenia, June 13–17, 2004
[69] Davenne L, Ragueneau F, Mazar J, Ibrahimbegović A (2003) Efficient approaches to finite element analysis in earthquake engineering. Comput Struct 81:1223–1239 · doi:10.1016/S0045-7949(03)00038-5
[70] De La Llera JC, Vásquez J, Chopra AK, Almazán JL (2000) A macro-element model for inelastic building analysis. Earthquake Eng Struct Dyn 29:1725–1757 · doi:10.1002/1096-9845(200012)29:12<1725::AID-EQE982>3.0.CO;2-4
[71] Dides MA, De La Llera JC (2005) A comparative study of concentrated plasticity models in dynamic analysis of building structures. Earthquake Eng Struct Dyn 34:1005–1026 · doi:10.1002/eqe.468
[72] Driemeier L, Baroncini SP, Alves M (2005) A contribution to the numerical non-linear analysis of three-dimensional truss system considering large strains, damage and plasticity. Commun Nonlinear Sci Numer Simul 10:515–535 · Zbl 1068.74074 · doi:10.1016/j.cnsns.2003.12.002
[73] Ehrlich D, Armero F (2005) Finite element methods for the analysis of softening plastic hinges in beams and frames. Comput Mech 35:237–264 · Zbl 1109.74358 · doi:10.1007/s00466-004-0575-z
[74] Ericksen JL, Truesdell C (1957) Exact theory of stress and strain in rods and shells. Arch Ration Mech Anal 1:295–323 · Zbl 0081.39303 · doi:10.1007/BF00298012
[75] European Committee for Standardization (1998) Eurocode 8: design of structures for earthquake resistance–Part 1: general rules, seismic actions and rules for buildings. Final Draft, Ref No: prEN 1998-1:2003 E
[76] Fajfar P, Fifchinger M, Dolšek M (2004) Macro-models and simplified methods for efficient structural analysis in earthquake engineering. In: Multi-physics and multi-scale computer models in non-linear analysis and optimal design of engineering structures under extreme conditions, Slovenia, June 13–17, 2004
[77] Faleiro J, Oller S, Barbat AH (2008) Plastic-damage seismic model for reinforced concrete frames. Comput Struct 86(7–8):581–597 · doi:10.1016/j.compstruc.2007.08.007
[78] Fardis MN (1997) Seismic analysis of RC structures. Constr Res Commun Ltd 1(1):57–67
[79] Federal Emergency Management Agency (FEMA) (2000) NEHRP recommended provisions for seismic regulations for new buildings and other structures. Report 368, Washington, DC
[80] Federal Emergency Management Agency (FEMA) (2000) Prestandard and commentary for the seismic rehabilitation of buildings. Report 356, Washington, DC
[81] Felippa CA, Crivelli LA, Haugen B (1994) A survey of the core-congruential formulation for geometrically nonlinear TL finite elements. Arch Comput Methods Eng 1:1–48 · doi:10.1007/BF02736179
[82] Fialko S (2001) Aggregation multilevel iterative solver for analysis of large-scale finite element problems of structural mechanics: linear statics and natural vibrations. In: Parallel processing and applied mathematics: 4th international conference. PPAM 2001, Naleczów, Poland, September 9–12, 2001
[83] Fraternali F, Bilotti G (1997) Nonlinear elastic stress analysis in curved composite beams. Comput Struct 62(5):837–859 · Zbl 0901.73035 · doi:10.1016/S0045-7949(96)00301-X
[84] Freddi L, Morassi A, Paroni R (2004) Thin-walled beams: the case of the rectangular cross-section. J Elast 76:45–66 · Zbl 1060.74034 · doi:10.1007/s10659-004-7193-z
[85] Fu Y, Kasai K (1998) Comparative study of frames using viscoelastic and viscous dampers. J Struct Eng 124(5):513–522 · doi:10.1061/(ASCE)0733-9445(1998)124:5(513)
[86] Gerardin M, Cardona A (1989) Kinematics and dynamics of rigid and flexible mechanisms using finite elements and quaternion algebra. Comput Mech 4:115–135 · Zbl 0666.73014 · doi:10.1007/BF00282414
[87] Gluck N, Reinhorn AM, Gluck J, Levy R (1996) Design of supplemental damping for control of structures. J Struct Eng 122(12):1394–1399 · doi:10.1061/(ASCE)0733-9445(1996)122:12(1394)
[88] Gonzalez O, Simo JC (1996) On the stability of symplectic and energy-momentum algorithms for non-linear Hamiltonian systems with symmetry. Comput Methods Appl Mech Eng 134:197–222 · Zbl 0900.70013 · doi:10.1016/0045-7825(96)01009-2
[89] Grassia FS (1998) Practical parameterization of rotations using the exponential map. J Graphics Tools 3:29–48
[90] Gruttmann F, Sauer R, Wagner W (1998) A geometrical nonlinear eccentric 3-D beam element with arbitrary cross sections. Comput Methods Appl Mech Eng 160:383–400 · Zbl 0951.74065 · doi:10.1016/S0045-7825(97)00305-8
[91] Gruttmann F, Sauer R, Wagner W (1998) Shear stresses in prismatic beams with arbitrary cross-sections. Technical Report Universität Karlsruhe (TH), Institut für Baustatik · Zbl 0931.74067
[92] Gruttmann F, Sauer R, Wagner W (2000) Theory and numerics of three-dimensional beams with elastoplastic material behavior. Int J Numer Methods Eng 48:1675–1702 · Zbl 0989.74069 · doi:10.1002/1097-0207(20000830)48:12<1675::AID-NME957>3.0.CO;2-6
[93] Gupta A, Krawinkler H (2000) Dynamic P-Delta effects for flexible inelastic steel structures. J Struct Eng 126(1):145–154 · doi:10.1061/(ASCE)0733-9445(2000)126:1(145)
[94] Hajjar JF (2000) Concrete-filled steel tube columns under earthquake loads. Progress Struct Eng Mater 2:72–81 · doi:10.1002/(SICI)1528-2716(200001/03)2:1<72::AID-PSE9>3.0.CO;2-E
[95] Hanganu AD, Oñate E, Barbat AH (2002) Finite element methodology for local/global damage evaluation in civil engineering structures. Comput Struct 80:1667–1687 · doi:10.1016/S0045-7949(02)00012-3
[96] Hanson RD, Aiken ID, Nims DK, Ritchter PJ, Batchman RE (1993) State of the art and state of the practice in seismic engineering dissipation. In: Proceedings, ATC-17-1. Seminar on seismic isolation, passive energy dissipation and active control. Applied Technology Council, San Francisco, California, March 1993
[97] Highway Innovative Technology Evaluation Center (HITEC) (1996) A service center of the civil engineering research foundation (CERF). Guidelines for the testing of seismic isolation and energy dissipation devices. Technical Evaluation Report No: 96-02
[98] Highway Innovative Technology Evaluation Center (HITEC) (1999) A service center of the civil engineering research foundation (CERF). Summary of the evaluation findings for the testing of seismic isolation and passive energy dissipating devices. Technical Evaluation Report No: 40404
[99] Hjelmstad KD, Taciroglu E (2003) Mixed variational methods for finite element analysis of geometrically non-linear, inelastic Bernoulli-Euler beams. Commun Numer Methods Eng 19:809–832 · Zbl 1154.74387 · doi:10.1002/cnm.622
[100] Hsiao KM, Lin JY, Lin WY (1999) A consistent co-rotational finite element formulation for geometrically nonlinear dynamic analysis of 3-D beams. Comput Methods Appl Mech Eng 169:1–18 · Zbl 0990.74065 · doi:10.1016/S0045-7825(98)00152-2
[101] Hughes TJR (2000) The finite element method. Linear static and dynamic finite element analysis. Dover, New York
[102] Hwang JS, Ku SW (1997) Analytical modelling of high damping rubber bearings. J Struct Eng 123:1029–1036 · doi:10.1061/(ASCE)0733-9445(1997)123:8(1029)
[103] Iaura M, Atluri SN (1989) On a consistent theory, and variational formulation of finitely stretched and rotated 3-D space-curved beams. Comput Mech 4:73–78 · Zbl 0666.73015 · doi:10.1007/BF00282411
[104] Ibrahimbegović A (1995) On finite element implementation of geometrically nonlinear Reissner’s beam theory: three-dimensional curved beam elements. Comput Methods Appl Mech Eng 122:11–26 · Zbl 0852.73061 · doi:10.1016/0045-7825(95)00724-F
[105] Ibrahimbegović A (1997) On the choice of finite rotation parameters. Comput Methods Appl Mech Eng 149:49–71 · Zbl 0924.73110 · doi:10.1016/S0045-7825(97)00059-5
[106] Ibrahimbegović A, Al Mikdad M (2000) Quadratically convergent direct calculation of critical points for 3D structures undergoing finite rotations. Comput Methods Appl Mech Eng 189:107–120 · Zbl 0972.74080 · doi:10.1016/S0045-7825(99)00291-1
[107] Ibrahimbegović A, Mamouri S (2002) Energy conserving/decaying implicit time-stepping scheme for nonlinear dynamics of three-dimensional beams undergoing finite rotations. Comput Methods Appl Mech Eng 191:4241–4258 · Zbl 1053.74046 · doi:10.1016/S0045-7825(02)00377-8
[108] Ibrahimbegović A, Mazen AM (1998) Finite rotations in dynamics of beams and implicit time-stepping schemes. Int J Numer Methods Eng 41:781–814 · Zbl 0902.73045 · doi:10.1002/(SICI)1097-0207(19980315)41:5<781::AID-NME308>3.0.CO;2-9
[109] Ibrahimbegović A, Taylor RL, Lim H (2003) Non-linear dynamics of flexible multibody systems. Comput Struct 81:1113–1132 · doi:10.1016/S0045-7949(03)00032-4
[110] Isobe D, Tsuda M (2003) Seismic collapse analysis of reinforced concrete framed structures using the finite element method. Earthquake Eng Struct Dyn 32:2027–2046 · doi:10.1002/eqe.313
[111] Izzuddin BA (2001) Conceptual issues in geometrically nonlinear analysis of 3D framed structures. Comput Methods Appl Mech Eng 191:1029–1053 · Zbl 1052.74032 · doi:10.1016/S0045-7825(01)00317-6
[112] Jelenic G (2004) Different aspects of invariance and shear locking in 3D beam elements. In: Advanced research workshop: multi-physics and multi-scale computer models in non-linear analysis and optimal design of engineering structures under extreme conditions, Bled, Slovenia, June 13–17, 2004
[113] Jelenic G, Crisfield MA (1999) Geometrically exact 3D beam theory: implementation of a strain-invariant finite element for static and dynamics. Comput Methods Appl Mech Eng 171:141–171 · Zbl 0962.74060 · doi:10.1016/S0045-7825(98)00249-7
[114] Jelenic G, Saje M (1995) A kinematically exact space finite strain beam model-finite element formulation by generalized virtual work principle. Comput Methods Appl Mech Eng 120:131–161 · Zbl 0852.73062 · doi:10.1016/0045-7825(94)00056-S
[115] Jiang WG, Henshall JL (2002) A coupling cross-section finite element model for torsion analysis of prismatic bars. Eur J Mech A/Solids 21:513–522 · Zbl 1100.74634 · doi:10.1016/S0997-7538(02)01209-3
[116] Kane C, Marsden JE, Ortiz M, West M (2000) Variational integrators and the Newmark algorithm for conservative and dissipative mechanical systems. Int J Numer Methods Eng 49:1295–1325 · Zbl 0969.70004 · doi:10.1002/1097-0207(20001210)49:10<1295::AID-NME993>3.0.CO;2-W
[117] Kapania RK, Li J (2003) On a geometrically exact curved/twisted beam theory under rigid cross-section assumption. Comput Mech 30:428–443 · Zbl 1038.74582 · doi:10.1007/s00466-003-0421-8
[118] Kapania RK, Li J (2003) A formulation and implementation of geometrically exact curved beam elements incorporating finite strains and finite rotations. Comput Mech 30:444–459 · Zbl 1038.74635 · doi:10.1007/s00466-003-0422-7
[119] Kappos AJ (1997) Seismic damage indices for RC buildings: evaluation of concepts and procedures. Constr Res Commun Ltd 1(1):78–87
[120] Kasai K, Fu Y, Watanabe A (1998) Passive control systems for seismic damage mitigation. J Struct Eng 124(5):501–512 · doi:10.1061/(ASCE)0733-9445(1998)124:5(501)
[121] Kelly J (1997) Earthquake-resistant design with rubber, 2nd edn. Springer, Telos
[122] Kelly JM (1999) The role of damping in seismic isolation. Earthquake Eng Struct Dyn 28:3–20 · doi:10.1002/(SICI)1096-9845(199901)28:1<3::AID-EQE801>3.0.CO;2-D
[123] Kikuchi M, Aiken I (1997) An analytical hysteresis model for elastomeric seismic isolation bearings. Earthquake Eng Struct Dyn 26(2):215–231 · doi:10.1002/(SICI)1096-9845(199702)26:2<215::AID-EQE640>3.0.CO;2-9
[124] Kim JK, Lee TG (1993) Failure behavior of reinforced concrete frames by the combined layered and nonlayered method. Comput Struct 48(5):819–825 · doi:10.1016/0045-7949(93)90503-6
[125] Kojima H, Yoshihide Y (1990) Performance, durability of high damping rubber bearings for earthquake protection. Rubber World 202(4)
[126] Kwak H-G, Filippou FC (1990) Finite element analysis of reinforced concrete structures under monotonic loads. Technical Report n: UCB/SEMM–90/14. Department of Civil Engineering, University of California Berkeley, California, USA
[127] Kwak H-G, Kim S-P (2001) Nonlinear analysis of RC beam subject to cyclic loading. J Struct Eng 127(12):1436–1444 · doi:10.1061/(ASCE)0733-9445(2001)127:12(1436)
[128] Lafortune S, Goriely A, Tabor M (2006) The dynamics of stretchable rods in the inertial case. Nonlinear Dyn 43:173–195 · Zbl 1138.74357 · doi:10.1007/s11071-006-0759-5
[129] Lee T, Leok M, McClamroch NH (2007) Lie group variational integrators for the full body problem. Comput Methods Appl Mech Eng 196:2907–2924 · Zbl 1120.70004 · doi:10.1016/j.cma.2007.01.017
[130] Lee D, Taylor DP (2001) Viscous damper development and future trends. Struct Des Tall Build 10:311–320 · doi:10.1002/tal.188
[131] Lens EV, Cardona A, Géradin M (2004) Energy preserving time integration for constrained multibody systems. Multibody Syst Dyn 11:41–61 · Zbl 1046.70003 · doi:10.1023/B:MUBO.0000014901.06757.bb
[132] Lew A, Marsden JE, Ortiz M, West M (2004) An overview of variational integrators. In: Franca LP (ed) Finite element methods: 1970’s and beyond. CIMNE, Barcelona
[133] Lew A, Marsden JE, Ortiz M, West M (2004) Variational time integrators. Int J Numer Methods Eng 60:153–212 · Zbl 1060.70500 · doi:10.1002/nme.958
[134] Li J (2000) A geometrically exact curved beam theory and its finite element formulation/implementation. MSc thesis, Virginia Polytechnic Institute and State University
[135] Lim CW, Chung TY, Moon SJ (2003) Adaptive bang-bang control for the vibration control of structures under earthquakes. Earthquake Struct Dyn 32:1977–1994 · doi:10.1002/eqe.310
[136] Lin YY, Chang KC (2003) Study on damping reduction factors for buildings under earthquake ground motions. J Struct Eng 129:206–214 · doi:10.1061/(ASCE)0733-9445(2003)129:2(206)
[137] Lin WH, Chopra AK (2003) Asymmetric one-storey elastic system with non-linear viscous and viscoelastic dampers: earthquake response. Earthquake Eng Struct Dyn 32:555–577 · doi:10.1002/eqe.237
[138] Lin WH, Chopra AK (2003) Asymmetric one-storey elastic system with non-linear viscous and viscoelastic dampers: simplified analysis and supplemental damping system design. Earthquake Eng Struct Dyn 32:579–596 · doi:10.1002/eqe.238
[139] Liu JY, Hong JZ (2004) Dynamics of three-dimensional beams undergoing large overall motion. Eur J Mech A/Solids 23:1051–1068 · Zbl 1063.74046 · doi:10.1016/j.euromechsol.2004.08.003
[140] López Almansa F, Barbat AH, Rodellar J (1988) SSP algorithm for linear and non-linear dynamic response simulation. Int J Numer Methods Eng 26(12):2687–2706 · Zbl 0674.73065 · doi:10.1002/nme.1620261208
[141] Love AEHA (1996) Treatise on the mathematical theory of elasticity. Dover, New York
[142] Lu Y (2002) Comparative study of seismic behavior of multistory reinforced concrete framed structures. J Struct Eng 128(2):169–178 · doi:10.1061/(ASCE)0733-9445(2002)128:2(169)
[143] Lubliner J (1972) On the thermodynamic foundations of non-linear solid mechanics. Int J Non-Linear Mech 7:237–254 · Zbl 0265.73005 · doi:10.1016/0020-7462(72)90048-0
[144] Lubliner J (1985) Thermomechanics of deformable bodies, Technical Report, Department of Civil Engineering, University of California at Berkeley
[145] Lubliner J (2008) Plasticity theory. Dover, New York · Zbl 1201.74002
[146] Lubliner J, Oliver J, Oller S, Oñate E (1989) A plastic-damage model for concrete. Int J Solids Struct 25:299–326 · doi:10.1016/0020-7683(89)90050-4
[147] Luccioni BM, Rougier VC (2005) A plastic damage approach for confined concrete. Comput Struct 83:2238–2256 · doi:10.1016/j.compstruc.2005.03.014
[148] Magalhães de Souza R, Filippou FC, Maués Brabo Pereira A, Aranha GYR Jr (2003) Force formulation of a non-prismatic Timoshenko beam finite element for dynamic analysis of frames. In: CILAMNE, XXIV Iberian Latin–American congress on computational methods in engineering, Ouro Preto/MG Brasil
[149] Mäkinen J (2001) Critical study of Newmark-scheme on manifold of finite rotations. Comput Methods Appl Mech Eng 191:817–828 · Zbl 1002.70003 · doi:10.1016/S0045-7825(01)00291-2
[150] Mäkinen J (2004) A formulation for flexible multibody mechanics. Lagrangian geometrically exact beam elements using constrain manifold parametrization. PhD thesis, Tampere University of Technology, Institute of Applied Mechanics and Optimization
[151] Mäkinen J (2007) Total Lagrangian Reissner’s geometrically exact beam element without singularities. Int J Numer Methods Eng 70:1009–1048 · Zbl 1194.74441 · doi:10.1002/nme.1892
[152] Mäkinen J, Marjamäki H (2005) Total Lagrangian parametrization of rotation manifold. In: ENOC, Hedinhoven, Netherlands, pp 522–530
[153] Makris N, Burton SA, Hill D, Jordan M (1996) Analysis and design of ER damper for seismic protection of structures. J Mech Eng 122(10):1003–1011 · doi:10.1061/(ASCE)0733-9399(1996)122:10(1003)
[154] Makris N, Changt SP (2000) Effect of viscous, viscoplastic and friction damping on the response of seismic isolated structures. Earthquake Eng Struct Dyn 29:85–107 · doi:10.1002/(SICI)1096-9845(200001)29:1<85::AID-EQE902>3.0.CO;2-N
[155] Malvern LE (1969) Introduction to the mechanics of a continuous medium. Prentice-Hall, Englewood Cliffs
[156] Marsden JE, Hughes TJR (1983) Mathematical foundations of elasticity. Prentice-Hall, Englewood Cliffs · Zbl 0545.73031
[157] Marsden JE, Wendlandt JM (1997) Mechanical systems with symmetry, variational principles, and integration algorithms. In: Alber M, Hu B, Rosenthal J (eds) Current and future directions in applied mathematics. Birkhäuser, Basel, pp 219–261 · Zbl 0936.70004
[158] Marsden JE, West M (2001) Discrete mechanics and variational integrators. Acta Numer 10:357–514 · Zbl 1123.37327 · doi:10.1017/S096249290100006X
[159] Martínez Franklin CE (1997) A theoretical and numerical evaluation of nonlinear beam elements. Master of science thesis, Massachusetts Institute of Technology
[160] Martinez X, Oller S, Rastellini F, Barbat AH (2008) Numerical procedure for the computation of RC structures reinforced with FRP using the serial/parallel mixing theory. Comput Struct 86(15–16):1604–1618 · doi:10.1016/j.compstruc.2008.01.007
[161] Mata P, Boroschek R, Barbat AH (2004) Analytical model for high damping elastomers applied to energy dissipating devices. Numerical study and experimental validation. In: 3CSC third European conference on structural control, Vienna, July 12–15, 2004
[162] Mata P, Boroschek R, Barbat AH, Oller S (2007) High damping rubber model for energy dissipating devices. J Earthquake Eng 11(2):231–256 · doi:10.1080/13632460601123214
[163] Mata P, Oller S, Barbat AH (2007) Static analysis of beam structures under nonlinear geometric and constitutive behavior. Comput Methods Appl Mech Eng 196:4458–4478 · Zbl 1173.74352 · doi:10.1016/j.cma.2007.05.005
[164] Mata P, Oller S, Barbat AH (2008) Dynamic analysis of beam structures considering geometric and constitutive nonlinearity. Comput Methods Appl Mech Eng 197:857–878 · Zbl 1169.74462 · doi:10.1016/j.cma.2007.09.013
[165] Mata P, Barbat AH, Oller S, Boroschek R (2008) Nonlinear seismic analysis of RC structures with energy dissipating devices. Int J Numer Methods Eng, 2008, submitted · Zbl 1183.74104
[166] Mazars J, Kotronis P, Ragueneau F, Casaux G (2006) Using multifiber beams to account for shear and torsion. Applications to concrete structural elements. Comput Methods Appl Mech Eng 195:7264–7281 · Zbl 1331.74097 · doi:10.1016/j.cma.2005.05.053
[167] Mazzolani FM (2001) Passive control technologies for seismic-resistant buildings in Europe. Progress Struct Eng Mater 3:277–287 · doi:10.1002/pse.83
[168] Meek JL, Loganathan S (1989) Large displacement analysis of space-frame structures. Comput Methods Appl Mech Eng 72:57–75 · Zbl 0675.73034 · doi:10.1016/0045-7825(89)90121-7
[169] Miyazakyi M, Mitsusaka Y (1992) Design of a building with 20% or greater damping. In: Tenth world conference on earthquake engineering, Madrid, Spain, pp 4143–4148
[170] Monti G, Spacone E (2000) Reinforced concrete fiber beam element with bond-slip. J Struct Eng 126:654–661 · doi:10.1061/(ASCE)0733-9445(2000)126:6(654)
[171] Neuenhofer A, Filippou FC (1997) Evaluation of the nonlinear frame finite-element models. J Struct Eng 123(7):958–966 · doi:10.1061/(ASCE)0733-9445(1997)123:7(958)
[172] Neuenhofer A, Filippou FC (1998) Geometrically nonlinear flexibility–based frame finite element. J Struct Eng 124(6):704–711 · doi:10.1061/(ASCE)0733-9445(1998)124:6(704)
[173] Nukala PKVV, White DW (2004) A mixed finite element for three-dimensional nonlinear analysis of steel frames. Comput Methods Appl Mech Eng 193:2507–2545 · Zbl 1067.74582 · doi:10.1016/j.cma.2004.01.029
[174] Oliver J (1996) Modelling strong discontinuities in solid mechanics via strain softening constitutive equations. Part 1: fundamentals. Int J Numer Methods Eng 39:3575–3600 · Zbl 0888.73018 · doi:10.1002/(SICI)1097-0207(19961115)39:21<3575::AID-NME65>3.0.CO;2-E
[175] Oliver J, Cervera M, Oller S, Lubliner J (1990) Isotropic damage models and smeared crack analysis of concrete. In: Proceedings 2nd ICCAADCS, vol 2, Zell Am See, Austria. Pineridge Press, pp 945–958
[176] Oliver J, Huespe AE (2004) Continuum approach to material failure in strong discontinuity settings. Comput Methods Appl Mech Eng 193:3195–3220 · Zbl 1060.74507 · doi:10.1016/j.cma.2003.07.013
[177] Oller S (2001) Fractura mecánica. Un enfoque global. International Center for Numerical Methods in Engineering, CIMNE
[178] Oller S, Barbat AH (2006) Moment-curvature damage model for bridges subjected to seismic loads. Comput Methods Appl Mech Eng 195:4490–4511 · Zbl 1123.74044 · doi:10.1016/j.cma.2005.09.011
[179] Oller S, Luccioni B, Barbat AH (1996) Un método de evaluación del daño sísmico en pórticos de hormigón armado. Rev Int Métodos Numér Cálc Diseño Ing 12:215–238
[180] Oller S, Oñate E, Miquel J (1996) Mixing anisotropic formulation for the analysis of composites. Commun Numer Methods Eng 12:471–482 · Zbl 0856.73042 · doi:10.1002/(SICI)1099-0887(199608)12:8<471::AID-CNM995>3.0.CO;2-6
[181] Oller S, Oñate E, Miquel J, Botello S (1996) A plastic damage constitutive model for composites materials. Int J Solids Struct 33(17):2501–2518 · Zbl 0909.73065 · doi:10.1016/0020-7683(95)00161-1
[182] O’Reilly OM (1998) On constitutive relations for elastic rods. Int J Solids Struct 35:1009–1024 · Zbl 0931.74042 · doi:10.1016/S0020-7683(97)00100-5
[183] Ovesy HR, Loughlan J, GhannadPour SAM (2006) Geometric non-linear analysis of channel sections under end shortening, using different versions of the finite strip method. Comput Struct 84:855–872 · doi:10.1016/j.compstruc.2006.02.010
[184] Papaioannou I, Fragiadakis M, Papadrakakis M (2005) Inelastic analysis of framed structures using the fiber approach. In: 5ht GRACM international congress on computational mechanics
[185] Park MS, Lee BC (1996) Geometrically non-linear and elastoplastic three-dimensional shear flexible beam element of Von-Mises-type hardening material. Int J Numer Methods Eng 39:383–408 · Zbl 0846.73067 · doi:10.1002/(SICI)1097-0207(19960215)39:3<383::AID-NME859>3.0.CO;2-F
[186] Parulekar YM, Reddy GR, Vaze KK, Kushwaha HS (2004) Lead extrusion dampers for reducing seismic response of coolant channel assembly. Nucl Eng Des 227:175–183 · doi:10.1016/j.nucengdes.2003.09.006
[187] Petrolo AS, Casciaro R (2004) 3D beam element based on Saint Venànt’s rod theory. Comput Struct 82:2471–2481 · doi:10.1016/j.compstruc.2004.07.004
[188] Pielorz A (2004) Nonlinear equations for a thin beam. Acta Mech 167:1–12 · Zbl 1064.74119 · doi:10.1007/s00707-003-0058-x
[189] Popescu B, Hodges DH (2000) On asymptotically correct Timoshenko-like anisotropic beam theory. Int J Solids Struct 37:535–558 · Zbl 0986.74047 · doi:10.1016/S0020-7683(99)00020-7
[190] Rasouli SK, Yahyai M (2002) Control of response of structures with passive and active tuned mass dampers. Struct Des Tall Build 11:1–14 · doi:10.1002/tal.181
[191] Reismann H (2001) Finite deformation of slender beams. ZAMM J Appl Math Mech 81:481–488 · Zbl 1009.74035 · doi:10.1002/1521-4001(200107)81:7<481::AID-ZAMM481>3.0.CO;2-1
[192] Reissner E (1972) On one-dimensional finite-strain beam theory: the plane problem. J Appl Math Phys 23:795–804 · Zbl 0248.73022 · doi:10.1007/BF01602645
[193] Reissner E (1973) On one-dimensional large-displacement finite-strain beam theory. Stud Appl Math LII:287–295 · Zbl 0267.73032
[194] Reznikov BS (1991) Analysis of the nonlinear deformation of composites with allowance for finite rotations of structural elements. Translated from Zh Prikl Mekh Tekhn Fiz 4:161–165
[195] Riley MA, Sadek F, Mohraz B (1999) Guidelines for testing passive energy dissipation devices. In: Proceedings, US/Japan Bridge engineering workshop, 15th, Tsukuba city, Japan
[196] Ritto-Corrëa M, Camotin D (2002) On the differentiation of the Rodriguez formula and its significance for the vector-like parametrization of Reissner-Simo beam theory. Int J Numer Methods Eng 55:1005–1032 · Zbl 1033.74027 · doi:10.1002/nme.532
[197] Robinson WH, Greenbank LR (2006) An extrusion energy absorber suitable for the protection of structures during an earthquake. Earthquake Eng Struct Dyn 4:251–259 · doi:10.1002/eqe.4290040306
[198] Romero I (2004) The interpolation of rotations and its application to finite element models of geometrically exact rods. Comput Mech 34:121–133 · Zbl 1138.74406 · doi:10.1007/s00466-004-0559-z
[199] Romero I, Armero F (2002) An objective finite element approximation of the kinematics and geometrically exact rod and its use in the formulation of an energy-momentum conserving scheme in dynamics. Int J Numer Methods Eng 54:1683–1716 · Zbl 1098.74713 · doi:10.1002/nme.486
[200] Rosen A, Sabag M, Givoli G (1996) A general nonlinear structural model of a multirod (multibeam) system-I. Theoretical derivations. Comput Struct 61:617–632 · Zbl 0899.73192 · doi:10.1016/0045-7949(95)00454-8
[201] Rubin MB (2007) A simplified implicit Newmark integration scheme for finite rotations. Comput Math Appl 53:219–231 · Zbl 1190.74027 · doi:10.1016/j.camwa.2006.02.021
[202] Ryan KR, Chopra AK (2004) Estimating the seismic displacement of friction pendulum isolators based on non-linear response history analysis. Earthquake Struct Dyn 33:359–373 · doi:10.1002/eqe.355
[203] Salomón O, Oller S, Barbat AH (1999) Finite element analysis of base isolated buildings subjected to earthquake loads. Int J Numer Methods Eng 46(10):1741–1761 · Zbl 0962.74070 · doi:10.1002/(SICI)1097-0207(19991210)46:10<1741::AID-NME722>3.0.CO;2-H
[204] Salomón O, Oller S, Barbat AH (2000) Análisis sísmico de edificios con dispositivos de aislamiento de base elastoméricos. Rev Int Métodos Num Cálc Diseño Ing 16:281–304
[205] Schimizze AM (2001) Comparison of P–{\(\Delta\)} analyses of plane frames using commercial structural analysis programs and current AISC design specifications. Master of science thesis, Virginia Polytechnic Institute and State University, USA
[206] Schulz M, Filippou F (2001) Non-linear spatial Timoshenko beam element with curvature interpolation. Int J Numer Methods Eng 50:761–785 · Zbl 1048.74044 · doi:10.1002/1097-0207(20010210)50:4<761::AID-NME50>3.0.CO;2-2
[207] Scott MH, Fenves GL (2006) Plastic hinge integration methods for the force-based beam-column elements. J Struct Eng 132(2):244–252 · doi:10.1061/(ASCE)0733-9445(2006)132:2(244)
[208] Shao Y, Aval S, Mirmiran A (2005) Fiber-element model for cyclic analysis of concrete-filled fiber reinforced polymer tubes. J Struct Eng 131(2):292–303 · doi:10.1061/(ASCE)0733-9445(2005)131:2(292)
[209] Shen KL, Soong TT (2005) Design of energy dissipation devices based on concept of damage control. J Struct Eng 122(1):76–82 · doi:10.1061/(ASCE)0733-9445(1996)122:1(76)
[210] Shi G, Atluri SN (1988) Elasto-plastic large deformation analysis of space–frames: a plastic hinge and stress–based explicit derivation of tangent stiffness. Int J Numer Methods Eng 26:589–615 · Zbl 0635.73053 · doi:10.1002/nme.1620260306
[211] Simmonds JG (2005) A simple nonlinear thermodynamic theory of arbitrary elastic beams. J Elast 81:51–62 · Zbl 1090.74034 · doi:10.1007/s10659-005-9003-7
[212] Simo JC (1985) A finite strain beam formulation. The three-dimensional dynamic problem. Part I. Comput Methods Appl Mech Eng 49:55–70 · Zbl 0583.73037 · doi:10.1016/0045-7825(85)90050-7
[213] Simo JC (1992) The (symmetric) Hessian for geometrically nonlinear models in solid mechanics: intrinsic definition and geometric interpretation. Comput Methods Appl Mech Eng 96:189–200 · Zbl 0761.73016 · doi:10.1016/0045-7825(92)90131-3
[214] Simo JC, Hjelmstad KD, Taylor RL (1984) Numerical formulations of elasto-viscoplastic response of beams accounting for the effect of shear. Comput Methods Appl Mech Eng 42:301–330 · doi:10.1016/0045-7825(84)90011-2
[215] Simo JC, Hughes TJR (1997) Computational inelasticity. Springer, New York
[216] Simo JC, Ju J (1987) Strain and stress based continuum damage models–Part I: formulation. Int J Solids Struct 23:281–301 · Zbl 0634.73106
[217] Simo JC, Tarnow N, Doblare M (1992) Non-linear dynamics of three–dimensional rods: exact energy and momentum conserving algorithms. Int J Numer Methods Eng 34:117–164 · Zbl 0760.73045 · doi:10.1002/nme.1620340108
[218] Simo JC, Tarnow N, Wong KK (1992) Exact energy-momentum conserving algorithms and symplectic schemes for nonlinear dynamics. Comput Methods Appl Mech Eng 100:63–116 · Zbl 0764.73096 · doi:10.1016/0045-7825(92)90115-Z
[219] Simo JC, Vu-Quoc L (1986) A three-dimensional finite-strain rod model. Part II: computational aspects. Comput Methods Appl Mech Eng 58:79–116 · Zbl 0608.73070 · doi:10.1016/0045-7825(86)90079-4
[220] Simo JC, Vu-Quoc L (1988) On the dynamics in space of rods undergoing large motions–a geometrically exact approach. Comput Methods Appl Mech Eng 66:125–161 · Zbl 0618.73100 · doi:10.1016/0045-7825(88)90073-4
[221] Simo JC, Vu-Quoc L (1991) A geometrically-exact rod model incorporating shear and torsion-warping deformation. Int J Solids Struct 27:371–393 · Zbl 0731.73029 · doi:10.1016/0020-7683(91)90089-X
[222] Sivaselvan MV, Reinhorn AM (2002) Collapse analysis: large inelastic deformations analysis of planar frames. J Struct Eng ASCE 128(12):1575–1583 · doi:10.1061/(ASCE)0733-9445(2002)128:12(1575)
[223] Soong TT, Dargush GF (1997) Passive energy dissipation systems in structural engineering. Wiley, New York
[224] Soong TT, Spencer BF Jr (2002) Supplemental energy dissipation: state-of-the-art and state-of-the-practice. Eng Struct 24:243–259 · doi:10.1016/S0141-0296(01)00092-X
[225] Spacone E, El-Tawil S (2004) Nonlinear analysis of steel–concrete composite structures: state of the art. J Struct Eng ASCE 130(2):159–168 · doi:10.1061/(ASCE)0733-9445(2004)130:2(159)
[226] Spencer BF Jr, Nagarajajah S (2003) State of the art of structural control. J Struct Eng 129(7):845–856 · doi:10.1061/(ASCE)0733-9445(2003)129:7(845)
[227] Spiliopoulos KV, Lykidis GC (2005) An efficient three–dimensional solid finite element dynamic analysis of reinforced concrete structures. Earthquake Eng Struct Dyn 35(2):137–157 · doi:10.1002/eqe.510
[228] Stammers CW, Sireteanu T (2000) Control of building seismic response by means of three semi-active friction dampers. J Sound Vib 237(5):745–759 · doi:10.1006/jsvi.1999.3096
[229] Stuelpnagel J (1964) On the parametrization of the three–dimensional rotation group. SIAM Rev 6:422–430 · Zbl 0126.27203 · doi:10.1137/1006093
[230] Taucer FF, Spacone E, Filipou FC (1991) A fiber beam-column element for seismic response analysis of reinforced concrete structures. Technical Report No UCB/EERC-91/17. Earthquake Engineering Research Center, College of Engineering, University of California, Berkeley
[231] Thanoon WA, Hamed AMM, Noorzaei J, Jaafar MS, Al-Silayvani BJ (2004) Inelastic analysis of composite sections. Comput Struct 82:1649–1656 · doi:10.1016/j.compstruc.2004.05.001
[232] Towashiraporn P, Park J, Goodno BJ, Craig JI (2002) Passive control methods for seismic response modification. Progress Struct Eng Mater 4:47–86
[233] Trainelli L (2002) The vectorial parametrization of rotation and motion. Technical Report, Politecnico di Milano, Dipartimento de Ingegneria Aerospaziale
[234] Uriz P, Whittaker AS (2001) Retrofit of the pre-Northridge steel moment-resisting frames using fluid viscous dampers. Struct Des Tall Build 10:371–390 · doi:10.1002/tal.199
[235] Valles RE, Reinhorn AM, Kunnath SK, Li C, Madan A (1996) IDARC 2D version 4.0: a program for the inelastic damage analysis of buildings. Technical Report NCEER-96-0010. National Center for Earthquake Engineering Research, State University of New York at Buffalo, January 8
[236] Vignjevic R (1997) A hybrid approach to the transient collapse analysis of thin walled frameworks I. Comput Methods Appl Mech Eng 148:407–421 · Zbl 0918.73123 · doi:10.1016/S0045-7825(97)00000-5
[237] Vignjevic R (1997) A hybrid approach to the transient collapse analysis of thin walled frameworks II. Comput Methods Appl Mech Eng 148:423–437 · Zbl 0918.73123 · doi:10.1016/S0045-7825(96)01162-0
[238] Vu-Quoc L, Li S (1995) Dynamics of sliding geometrically-exact beams: large angle maneuver and parametric resonance. Comput Methods Appl Mech Eng 120:65–118 · Zbl 0852.73030 · doi:10.1016/0045-7825(94)00051-N
[239] Wada A, Huang Y-H, Iwata M (2000) Passive damping technology for buildings in Japan. Progress Struct Eng Mater 2:335–350 · doi:10.1002/1528-2716(200007/09)2:3<335::AID-PSE40>3.0.CO;2-A
[240] Wagner W, Gruttmann F (2001) Finite element analysis of Saint-Venant torsion problem with exact integration of the elastic-plastic constitutive equations. Comput Methods Appl Mech Eng 190:3831–3848 · Zbl 0995.74077 · doi:10.1016/S0045-7825(00)00302-9
[241] Wen YK (1976) Method for random vibration of hysteretic systems. J Eng Mech Div 102:249–263
[242] Williamson EB (2003) Evaluation of damage and P–{\(\Delta\)} effects for systems under earthquake excitation. J Struct Eng 129(8):1036–1046 · doi:10.1061/(ASCE)0733-9445(2003)129:8(1036)
[243] Wolfe RW, Masri SF, Caffrey J (2002) Some structural health monitoring approaches for nonlinear hydraulic dampers. J Struct Control 9:5–18 · doi:10.1002/stc.6
[244] Yang JN, Kim Y-H, Agrawal AK (2000) Reseting semiactive stiffness damper for seismic response control. J Struct Eng 126(12):1427–1433 · doi:10.1061/(ASCE)0733-9445(2000)126:12(1427)
[245] Yeung N, Pan ADE (1998) The effectiveness of viscous-damping walls for controlling wind vibrations in multi-story buildings. J Wind Eng Ind Aerodyn 77&78:337–348 · doi:10.1016/S0167-6105(98)00154-8
[246] Youssef N (2001) Viscous dampers at multiple levels for the historic preservation of the Los Angeles City Hall. Struct Des Tall Build 10:339–350 · doi:10.1002/tal.198
[247] Yu W, Hodges DH (2004) Elasticity solutions versus asymptotic sectional analysis of homogeneous, isotropic, prismatic beams. J Appl Mech 71:15–23 · Zbl 1111.74734 · doi:10.1115/1.1640367
[248] Yu W, Volovoi VV, Hodges DH, Hong X (2002) Validation of the variational asymptotic beam sectional analysis. J Am Inst Aeronaut Astronaut 40(10):2105–2112
[249] Yu AM, Yang XG, Nie GH (2006) Generalized coordinate for warping of naturally curved and twisted beams with general cross–sectional shapes. Int J Solids Struct 43:2853–2867 · Zbl 1120.74592 · doi:10.1016/j.ijsolstr.2005.05.045
[250] Zupan D, Saje M (2003) Finite-element formulation of geometrically exact three-dimensional beam theories based on interpolation of strain measures. Comput Methods Appl Mech Eng 192:5209–5248 · Zbl 1054.74065 · doi:10.1016/j.cma.2003.07.008
[251] Zupan D, Saje M (2003) The three-dimensional beam theory: finite element formulation based on curvature. Comput Struct 81:1875–1888 · Zbl 1043.74526 · doi:10.1016/S0045-7949(03)00208-6
[252] Zupan D, Saje M (2005) Analytical integration of stress field and tangent material moduli over concrete cross-sections. Comput Struct 83:2368–2380 · doi:10.1016/j.compstruc.2005.03.030
[253] Zupan D, Saje M (2006) The linearized three-dimensional beam theory of naturally curved and twisted beams: the strain vectors formulation. Comput Methods Appl Mech Eng 195:4557–4578 · Zbl 1123.74034 · doi:10.1016/j.cma.2005.10.002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.