×

Singular perturbation methods for slow-fast dynamics. (English) Zbl 1170.70371

Summary: Recently, geometric singular perturbation theory has been extended considerably while at the same time producing many new applications. We will review a number of aspects relevant to non-linear dynamics to apply this to periodic solutions within slow manifolds and to review a number of non-hyperbolic cases. The results are illustrated by examples.

MSC:

70K60 General perturbation schemes for nonlinear problems in mechanics
70K70 Systems with slow and fast motions for nonlinear problems in mechanics

References:

[1] Anosov, D.V.: On limit cycles in systems of differential equations with a small parameter in the highest derivatives. AMS Transl. Ser. 2(33), 233–276 (1963) · Zbl 0133.35103
[2] Cartmell, M.: Introduction to Linear, Parametric and Nonlinear Vibrations. Chapman & Hall, London (1990) · Zbl 0790.70002
[3] Fenichel, N.: Persistence and smoothness of invariant manifolds for flows. Ind. Univ. Math. J. 21, 193–225 (1971) · Zbl 0246.58015 · doi:10.1512/iumj.1971.21.21017
[4] Fenichel, N.: Asymptotic stability with rate conditions. Ind. Univ. Math. J. 23, 1109–1137 (1974) · Zbl 0284.58008 · doi:10.1512/iumj.1974.23.23090
[5] Fenichel, N.: Asymptotic stability with rate conditions, II. Ind. Univ. Math. J. 26, 81–93 (1977) · Zbl 0365.58012 · doi:10.1512/iumj.1977.26.26006
[6] Fenichel, N.: Geometric singular perturbations theory for ordinary differential equations. J. Differ. Equ. 31, 53–98 (1979) · Zbl 0476.34034 · doi:10.1016/0022-0396(79)90152-9
[7] Flatto, L., Levinson, N.: Periodic solutions of singularly perturbed systems. J. Ration. Mech. Anal. 4, 943–950 (1955) · Zbl 0066.07302
[8] Grasman, J.: Asymptotic Methods for Relaxation Oscillations and Applications, p. 222, Springer-Verlag, New York (1987) · Zbl 0627.34037
[9] Jones, C.K.R.T.: Geometric singular perturbation theory. In: Dynamical Systems, Montecatini Terme, Lecture Notes in Mathematics, Johnson, R. (ed.), Springer-Verlag, Berlin, vol. 1609, pp. 44–118 (1994)
[10] Kaper, T.J.: An introduction to geometric methods and dynamical systems theory for singular perturbation problems. In: Analyzing Multiscale Phenomena Using Singular Perturbation Methods, Proceedings of the Symposium on Applied Mathematics, Cronin, J., O’Malley Jr., R. E. (eds.), American Mathematical Society, Providence, RI, vol. 56, pp. 85–131 (1999)
[11] Krupa, M., Szmolyan, P.: Relaxation oscillation and canard explosion. J. Differ. Equ. 174, 312–368 (2001) · Zbl 0994.34032 · doi:10.1006/jdeq.2000.3929
[12] O’Malley, R.E. Jr.: Introduction to Singular Perturbations. Academic, New York (1974)
[13] Schmidt G., Tondl, A.: Non-linear Vibrations, p. 420, Akademie-Verlag, Berlin (1986) · Zbl 0589.73027
[14] Szmolyan, P., Wechselberger, M.: Relaxation oscillations in \(\mathbb{R}\)3. J. Differ. Equ. 200, 69–104 (2004) · Zbl 1058.34055 · doi:10.1016/j.jde.2003.09.010
[15] Tikhonov, A.N.: Systems of differential equations containing a small parameter multiplying the derivative. Mat. Sb. 31, 575–586 (1952) · Zbl 0048.07101
[16] Tondl, A., Ruijgrok, T., Verhulst, F., Nabergoj, R.: Autoparametric Resonance in Mechanical Systems, p. 196, Cambridge University Press, New York (2000) · Zbl 0957.70001
[17] Vasil’eva, A.B.: Asymptotic behaviour of solutions to certain problems involving nonlinear differential equations containing a small parameter multiplying the highest derivatives. Russ. Math. Surv. 18, 13–84 (1963) · Zbl 0135.14001 · doi:10.1070/RM1963v018n03ABEH001137
[18] Verhulst, F.: Nonlinear Differential Equations and Dynamical Systems, p. 304, Springer-Verlag, New York (2000) · Zbl 1004.70015
[19] Verhulst, F., Abadi: Autoparametric resonance of relaxation oscilations. ZAMM 85, 122–131 (2005) · Zbl 1081.34038 · doi:10.1002/zamm.200410159
[20] Verhulst, F.: Methods and Applications of Singular Perturbations, Boundary Layers and Multiple Timescale Dynamics, p. 340, Springer-Verlag, Berlin (2005) · Zbl 1148.35006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.