×

Global calibrations for the non-homogeneous Mumford-Shah functional. (English) Zbl 1170.49308

Summary: Using a calibration method we prove that, if \(\Gamma\subset \Omega\) is a closed regular hypersurface and if the function \(g\) is discontinuous along \(\Gamma\) and regular outside, then the function \(u_\beta\) which solves \[ \begin{cases} \Delta u_\beta=\beta(u_\beta-g)\quad &\text{in }\Omega\backslash\Gamma\\ \partial_\nu u_\beta=0\quad & \text{on }\partial\Omega\cup\Gamma\end{cases} \] is in turn discontinuous along \(\Gamma\) and it is the unique absolute minimizer of the non-homogeneous Mumford-Shah functional \[ \int_{\Omega \backslash S_u}|\nabla u|^2dx +{\mathcal H}^{n-1}(S_u)+\beta \int_{\Omega\backslash S_u}(u-g)^2dx, \] over \(SBV (\Omega)\), for \(\beta\) large enough. Applications of the result to the study of the gradient flow by the method of minimizing movements are shown.

MSC:

49K10 Optimality conditions for free problems in two or more independent variables
49Q20 Variational problems in a geometric measure-theoretic setting

References:

[1] G. Alberti - G. Bouchitté - G. Dal Maso, The calibration method for the Mumford-Shah functional, C. R. Acad. Sci. Paris Sér. I Math. 329 (1999), 249-254. Zbl0948.49005 MR1711069 · Zbl 0948.49005 · doi:10.1016/S0764-4442(00)88602-4
[2] G. Alberti - G. Bouchitté - G. Dal MasoG., The calibration method for the Mumford-Shah functional and free discontinuity problems, Preprint SISSA, Trieste, 2001. Zbl1015.49008 MR2001706 · Zbl 1015.49008 · doi:10.1007/s005260100152
[3] L. Ambrosio, Movimenti minimizzanti, Rend. Accad. Naz. Sci. XL Mem. Mat. Sci. Fis. Natur. 113 (1995), 191-246. Zbl0957.49029 MR1387558 · Zbl 0957.49029
[4] L. Ambrosio, A compactness theorem for a new class of variational problems, Boll. Un. Mat. It. 3-B (1989), 857-881. Zbl0767.49001 MR1032614 · Zbl 0767.49001
[5] L. Ambrosio - N. Fusco - D. Pallara, “Functions of Bounded Variation and Free-Discontinuity Problems”, Oxford University Press, Oxford, 2000. Zbl0957.49001 MR1857292 · Zbl 0957.49001
[6] A. Bonnet, On the regularity of edges in image segmentation, Ann. Inst. H. Poincaré, Anal. Non Linéaire. 13 (1996), 485-528. Zbl0883.49004 MR1404319 · Zbl 0883.49004
[7] A. Chambolle - F. Doveri, Minimizing movements of the Mumford-Shah energy, Discrete Contin. Dynam. Systems 3 (1997), 153-174. Zbl0948.35073 MR1432071 · Zbl 0948.35073 · doi:10.3934/dcds.1997.3.153
[8] G. Dal Maso - M. G. Mora - M. Morini, Local calibrations for minimizers of the Mumford-Shah functional with rectilinear discontinuity set, J. Math. Pures Appl. 79 (2000), 141-162. Zbl0962.49013 MR1749156 · Zbl 0962.49013 · doi:10.1016/S0021-7824(99)00140-3
[9] E. De Giorgi - L. Ambrosio, Un nuovo funzionale del calcolo delle variazioni, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 82 (1988), 199-210. Zbl0715.49014 MR1152641 · Zbl 0715.49014
[10] M. C. Delfour - J. P. Zolésio, Shape Analysis via oriented distance functions, J. Funct. Anal. 123 (1994), 129-201. Zbl0814.49032 MR1279299 · Zbl 0814.49032 · doi:10.1006/jfan.1994.1086
[11] T. De Pauw - D. Smets, On explicit solutions for the problem of Mumford and Shah, Comm. Contemp. Math. 1 (1999), 201-212. Zbl0953.49022 MR1696099 · Zbl 0953.49022 · doi:10.1142/S0219199799000092
[12] M. Gobbino, Gradient flow for the one-dimensional Mumford-Shah functional, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 27 (1998), 145-193. Zbl0931.49010 MR1658873 · Zbl 0931.49010
[13] P. Grisvard, “Majorations en norme du maximum de la résolvante du laplacien dans un polygone. Nonlinear partial differential equations and their applications”, Collège de France Seminar, Vol. XII (Paris, 1991-1993), 87-96, Pitman Res. Zbl0811.35022 MR1291845 · Zbl 0811.35022
[14] P. Grisvard, “Elliptic Problems in Nonsmooth Domains”, Monographs and Studies in Mathematics 24, Pitman (Advanced Publishing Program), Boston, MA, 1985. Zbl0695.35060 MR775683 · Zbl 0695.35060
[15] A. Lunardi, “Analytic Semigroups and Optimal Regularity in Parabolic Problems”, Progress in Nonlinear Differential Equations and Their Applications, vol. 16, Birkhäuser Verlag, Basel, 1995. Zbl0816.35001 MR1329547 · Zbl 0816.35001
[16] M. G. Mora, Local calibrations for minimizers of the Mumford-Shah functional with a triple junction, Preprint SISSA, Trieste, 2001. Zbl1017.49018 MR1901148 · Zbl 1017.49018 · doi:10.1142/S0219199702000646
[17] M. G. Mora - M. Morini, Functional depending on curvatures with constraints, Rend. Sem. Mat. Univ. Padova 104 (2000), 173-199. Zbl1017.49019 MR1809356 · Zbl 1017.49019
[18] M. G. Mora - M. Morini, Local calibrations for minimizers of the Mumford-Shah functional with a regular discontinuity set, To appear on Ann. Inst. H. Poincaré, Anal. non linéaire. Zbl1052.49018 MR1841127 · Zbl 1052.49018 · doi:10.1016/S0294-1449(01)00075-0
[19] D. Mumford - J. Shah, Boundary detection by minimizing functionals, I, Proc. IEEE Conf. on Computer Vision and Pattern Recognition (San Francisco, 1985).
[20] D. Mumford - J. Shah, Optimal approximation by piecewise smooth functions and associated variational problems, Comm. Pure Appl. Math. 42 (1989), 577-685. Zbl0691.49036 MR997568 · Zbl 0691.49036 · doi:10.1002/cpa.3160420503
[21] T. J. Richardson, Limit theorems for a variational problem arising in computer vision, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 19 (1992), 1-49. Zbl0757.49027 MR1183756 · Zbl 0757.49027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.