×

Asymptotic behavior of individual orbits of discrete systems. (English) Zbl 1170.47004

We consider the asymptotic behavior of bounded solutions of the difference equations of the form \(x(n+1)=Bx(n) + y(n)\) in a Banach space \(\mathbb X\), where \(n=1,2,\ldots\), \(B\) is a linear continuous operator in \(\mathbb X\), and \((y(n))\) is a sequence in \(\mathbb X\) converging to \(0\) as \(n\to\infty\). An obtained result with an elementary proof says that if \(\sigma (B)\cap\{|z|=1\}\subset\{1\}\), then every bounded solution \(x(n)\) has the property that \(\lim_{n\to\infty}(x(n+1)-x(n)) =0\). This result extends a theorem due to Y.Katznelson and L.Tzafriri [J. Funct.Anal.68, No.3, 313–328 (1986; Zbl 0611.47005)]. Moreover, the techniques of the proof are furthered to study the individual stability of solutions of the discrete system. A discussion on further extensions is also given.

MSC:

47A35 Ergodic theory of linear operators
39A30 Stability theory for difference equations
47D06 One-parameter semigroups and linear evolution equations

Citations:

Zbl 0611.47005

References:

[1] G. R. Allan and T. J. Ransford, Power-dominated elements in a Banach algebra, Studia Math. 94 (1989), no. 1, 63 – 79. · Zbl 0705.46021
[2] W. Arendt and C. J. K. Batty, Tauberian theorems and stability of one-parameter semigroups, Trans. Amer. Math. Soc. 306 (1988), no. 2, 837 – 852. · Zbl 0652.47022
[3] Wolfgang Arendt and Charles J. K. Batty, Asymptotically almost periodic solutions of inhomogeneous Cauchy problems on the half-line, Bull. London Math. Soc. 31 (1999), no. 3, 291 – 304. · Zbl 0952.34048 · doi:10.1112/S0024609398005657
[4] Wolfgang Arendt, Charles J. K. Batty, Matthias Hieber, and Frank Neubrander, Vector-valued Laplace transforms and Cauchy problems, Monographs in Mathematics, vol. 96, Birkhäuser Verlag, Basel, 2001. · Zbl 0978.34001
[5] Wolfgang Arendt and Jan Prüss, Vector-valued Tauberian theorems and asymptotic behavior of linear Volterra equations, SIAM J. Math. Anal. 23 (1992), no. 2, 412 – 448. · Zbl 0765.45009 · doi:10.1137/0523021
[6] Bolis Basit and A. J. Pryde, Ergodicity and stability of orbits of unbounded semigroup representations, J. Aust. Math. Soc. 77 (2004), no. 2, 209 – 232. · Zbl 1076.46044 · doi:10.1017/S1446788700013598
[7] Charles J. K. Batty, Jan van Neerven, and Frank Räbiger, Local spectra and individual stability of uniformly bounded \?\(_{0}\)-semigroups, Trans. Amer. Math. Soc. 350 (1998), no. 5, 2071 – 2085. · Zbl 0893.47026
[8] Ralph Chill and Yuri Tomilov, Stability of operator semigroups: ideas and results, Perspectives in operator theory, Banach Center Publ., vol. 75, Polish Acad. Sci. Inst. Math., Warsaw, 2007, pp. 71 – 109. · Zbl 1136.47026 · doi:10.4064/bc75-0-6
[9] J. Esterle, E. Strouse, and F. Zouakia, Stabilité asymptotique de certains semi-groupes d’opérateurs et idéaux primaires de \?\textonesuperior (\?\(^{+}\)), J. Operator Theory 28 (1992), no. 2, 203 – 227 (French). · Zbl 0847.47026
[10] J. Esterle, E. Strouse, and F. Zouakia, Theorems of Katznelson-Tzafriri type for contractions, J. Funct. Anal. 94 (1990), no. 2, 273 – 287. · Zbl 0723.47013 · doi:10.1016/0022-1236(90)90014-C
[11] N. Kalton, S. Montgomery-Smith, K. Oleszkiewicz, and Y. Tomilov, Power-bounded operators and related norm estimates, J. London Math. Soc. (2) 70 (2004), no. 2, 463 – 478. · Zbl 1098.47009 · doi:10.1112/S0024610704005514
[12] Y. Katznelson and L. Tzafriri, On power bounded operators, J. Funct. Anal. 68 (1986), no. 3, 313 – 328. · Zbl 0611.47005 · doi:10.1016/0022-1236(86)90101-1
[13] R. deLaubenfels and Vũ Quá»’c Phóng, Stability and almost periodicity of solutions of ill-posed abstract Cauchy problems, Proc. Amer. Math. Soc. 125 (1997), no. 1, 235 – 241. · Zbl 0860.47025
[14] Nguyen Van Minh, Katznelson-Tzafriri type theorems for individual solutions of evolution equations, Proc. Amer. Math. Soc. 136 (2008), no. 5, 1749 – 1755. · Zbl 1157.34049
[15] Nguyen Van Minh, A new approach to the spectral theory of functions and the Loomis-Arendt-Batty-Vu Theory. Submitted. Preprint in arXiv.org at the URL: http://arxiv.org/abs/math.FA/0609652 · Zbl 1190.34065
[16] Heybetkulu Mustafayev, The Banach algebra generated by a \?\(_{0}\)-semigroup, C. R. Math. Acad. Sci. Paris 342 (2006), no. 8, 575 – 578 (English, with English and French summaries). · Zbl 1106.47036 · doi:10.1016/j.crma.2006.02.017
[17] Jan van Neerven, The asymptotic behaviour of semigroups of linear operators, Operator Theory: Advances and Applications, vol. 88, Birkhäuser Verlag, Basel, 1996. · Zbl 0905.47001
[18] Angus E. Taylor, Introduction to functional analysis, John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London, 1958. · Zbl 0081.10202
[19] Vũ Quá»’c Phóng, Theorems of Katznelson-Tzafriri type for semigroups of operators, J. Funct. Anal. 103 (1992), no. 1, 74 – 84. · Zbl 0770.47017 · doi:10.1016/0022-1236(92)90135-6
[20] Vũ Quá»’c Phóng, A short proof of the Y. Katznelson’s and L. Tzafriri’s theorem, Proc. Amer. Math. Soc. 115 (1992), no. 4, 1023 – 1024. · Zbl 0781.47003
[21] Vu Kuok Fong and Yu. I. Lyubich, A spectral criterion for almost periodicity for one-parameter semigroups, Teor. Funktsiĭ Funktsional. Anal. i Prilozhen. 47 (1987), 36 – 41 (Russian); English transl., J. Soviet Math. 48 (1990), no. 6, 644 – 647. · Zbl 0695.47033 · doi:10.1007/BF01094717
[22] Kôsaku Yosida, Functional analysis, 5th ed., Springer-Verlag, Berlin-New York, 1978. Grundlehren der Mathematischen Wissenschaften, Band 123.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.