×

A locking-free meshfree curved beam formulation with the stabilized conforming nodal integration. (English) Zbl 1168.74472

Summary: A locking-free meshfree curved beam formulation based on the stabilized conforming nodal integration is presented. Motivated by the pure bending solutions of thin curved beam, a meshfree approximation is constructed to represent pure bending mode without producing parasitic shear and membrane deformations. Furthermore, to obtain the exact pure bending solution (bending exactness condition), the integration constraints corresponding to the Galerkin weak form are derived. A nodal integration with curvature smoothing stabilization that satisfies the integration constraints is proposed under the Galerkin weak form for shear deformable curved beam. Numerical examples demonstrate that the resulting meshfree formulation can exactly reproduce pure bending mode with arbitrary dicretizations, and the method is stable and free of shear and membrane locking. Computational efficiency and accuracy are achieved simultaneously in the proposed formulation

MSC:

74S30 Other numerical methods in solid mechanics (MSC2010)
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
Full Text: DOI

References:

[1] Babu, CR; Prathap, G., A linear thick curved beam element, Int J Numer Meth Eng, 23, 1313-1328 (1986) · Zbl 0592.73109 · doi:10.1002/nme.1620230709
[2] Beissel, S.; Belytschko, T., Nodal integration of the element-free Galerkin method, Comput Meth Appl Mech Eng, 139, 49-74 (1996) · Zbl 0918.73329 · doi:10.1016/S0045-7825(96)01079-1
[3] Belytschko, T.; Lu, YY; Gu, L., Element-free Galerkin methods, Int J Numer Meth Eng, 37, 229-256 (1994) · Zbl 0796.73077 · doi:10.1002/nme.1620370205
[4] Chen, JS; Wu, CT; Yoon, S.; You, Y., A stabilized conforming nodal integration for Galerkin meshfree methods, Int J Numer Meth Eng, 50, 435-466 (2001) · Zbl 1011.74081 · doi:10.1002/1097-0207(20010120)50:2<435::AID-NME32>3.0.CO;2-A
[5] Chen, JS; Yoon, S.; Wu, CT, Nonlinear version of stabilized conforming nodal integration for Galerkin meshfree methods, Int J Numer Meth Eng, 53, 2587-2615 (2002) · Zbl 1098.74732 · doi:10.1002/nme.338
[6] Donning, B.; Liu, WK, Meshless methods for shear-deformable beams and plates, Comput Meth Appl Mech Eng, 152, 47-72 (1998) · Zbl 0959.74079 · doi:10.1016/S0045-7825(97)00181-3
[7] Garcia, O.; Fancello, EA; Barcellos, CS; Duarte, CA, Hp-clouds in Mindlin’s thick plate model, Int J Numer Meth Eng, 47, 1381-1400 (2000) · Zbl 0987.74067 · doi:10.1002/(SICI)1097-0207(20000320)47:8<1381::AID-NME833>3.0.CO;2-9
[8] Kanok-Nukulchai, W.; Barry, W.; Saran-Yasoontorn, K.; Bouillard, PH, On elimination of shear locking in the element-free Galerkin method, Int J Numer Meth Eng, 52, 705-725 (2001) · Zbl 1128.74347 · doi:10.1002/nme.223
[9] Krysl, P.; Belytschko, T., Analysis of thin plates by the element-free Galerkin method, Comput Mech, 16, 1-10 (1995) · Zbl 0825.76513 · doi:10.1007/BF00369880
[10] Krysl, P.; Belytschko, T., Analysis of thin shells by the element-free Galerkin method, Inter J Solids Struct, 33, 3057-3080 (1996) · Zbl 0929.74126 · doi:10.1016/0020-7683(95)00265-0
[11] Liu, WK; Jun, S.; Zhang, YF, Reproducing Kernel Particle Methods, Int J Numer Meth Fluids, 20, 1081-1106 (1995) · Zbl 0881.76072 · doi:10.1002/fld.1650200824
[12] Prathap, G., The curved beam/deep arch/finite ring element revisited, Int J Numer Meth Eng, 21, 389-407 (1985) · Zbl 0559.73078 · doi:10.1002/nme.1620210302
[13] Simo, JC; Hughes, TJR, On the variational foundation of assumed strain method, J Appl Mech, 53, 51-54 (1986) · Zbl 0592.73019 · doi:10.1115/1.3171737
[14] Wang, D., Hybrid meshfree formulation for solids and structures (2003), Los Angeles: University of California, Los Angeles
[15] Wang, D.; Chen, JS, Locking-free stabilized conforming nodal integration for meshfree Mindlin-Reissner plate formulation, Comput Meth Appl Mech Eng, 193, 1065-1083 (2004) · Zbl 1060.74675 · doi:10.1016/j.cma.2003.12.006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.