×

Complex dynamics in three-well Duffing system with two external forcings. (English) Zbl 1168.70320

The authors investigate bifurcations and existence of chaos in the following three-well duffing system with two periodic forcings \[ \ddot{x}+x(x^2-a^2)(x^2-1)+\overline{\delta}\dot{x}+\overline{\gamma}_1\cos{(\omega_1 t)}+\overline{\gamma}_2\cos{(\omega_2 t)}, \] where \(a,\overline{\gamma}_j\) and \(\omega_j(j=1,2)\) are real parameters. Physically, \(\overline{\delta}\) can be regarded as dissipation or damping \(\overline{\gamma}_j\) and \(\omega_j\) as the amplitudes and the frequences of the forcings, i.e. \(\overline{\delta},\;\overline{\gamma}_j,\;\omega_j \geq 0,\;0<a<1\). The fixed points and phase portraits for the unperturbed system are described. The conditions of chaos existence under periodic perturbation resulting from the homoclinic and heteroclinic bifurcations are performed at the usage of Melnikov’s method. The condition of the existence of chaotic motion under quasi-periodic perturbation for averaged system are derived by using second-order averaging method and Melnikov’s method. Numerical simulations illustrating the theoretical analysis are given.

MSC:

70K55 Transition to stochasticity (chaotic behavior) for nonlinear problems in mechanics
34C28 Complex behavior and chaotic systems of ordinary differential equations
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
Full Text: DOI

References:

[1] Bunz, H.; Ohno, H.; Haken, H., Subcritical period doubling in duffing equation -Type III intermittency, attractor crisis, Z Phys B, 56, 345-354 (1984)
[2] Chacón, R.; Bejarano, J. D., Homoclinic and heteroclinic chaos in a triple-well oscillator, J Sound Vib, 186, 2, 269-278 (1995) · Zbl 1049.70644
[3] Guckenheimer, J.; Homel, P., Nonlinear Oscillations, Dynamical System, and Bifurcation of Vector Fields (1992), Springer-Verlag
[4] Holmes, C.; Holmes, P., Second-order averaging and bifurcations to subharmonics in duffing’s equation, J Sound Vib, 78, 2, 161-174 (1981) · Zbl 0478.73028
[5] Holmes, P.; Whitley, D., On the attracting set for duffing’s equation, Physica D, 111-123 (1983) · Zbl 0574.58024
[6] Jing, Z. J.; Wang, R. Q., Complex dynamics in duffing system with two external forcings, Chaos, Solitons & Fractals, 23, 399-411 (2005) · Zbl 1077.34048
[7] Kenfark, A., Bifurcation structure of the coupled periodically driven double-well duffing oscillations, Chaos, Solitons & Fractals, 15, 205-218 (2003) · Zbl 1047.34042
[8] Lakshmanan, M.; Murali, K., Chaos in nonlinear oscillators – controlling and synchronization (1996), World Scientific Publishing Co. Pte. Ltd · Zbl 0868.58058
[9] Lenci, S.; Rega, G., Optimal numerical control of single-well to cross-well chaos transition in mechanical systems, Chaos, Solitons & Fractals, 15, 173-186 (2003) · Zbl 1058.70027
[10] Li, G. X.; Moon, F. C., Criteria for chaos of a three-well potential oscillator with homoclinic and heteroclinic orbits, J Sound Vib, 136, 1, 17-34 (1990) · Zbl 1235.74096
[11] Li, W.; Xu, W.; Zhao, J. F.; Ma, S. J., Stochastic optimal control of first-passage failure for coupled duffing-Van der pol system under Gaussian white noise excitations, Chaos, Solitons & Fractals, 25, 1221-1228 (2005) · Zbl 1142.93443
[12] Moon, F. C., Chaotic and fractal dynamics (1992), Wiley: Wiley New York
[13] Murakami, W.; Murakami, C.; Hirose, Kei-ichi; Ichikawa, Y. H., Integrable duffing’s maps and solutions of the duffing equation, Chaos, Solitons & Fractals, 15, 425-443 (2003) · Zbl 1031.37047
[14] Nayfeh, A. H.; Balachandran, B., Applied Nonlinear Dynamics-Analytical, Computational, and Experimental Methods (1994), John Wiley and Sons, Inc
[15] Parlitz, V.; Lauterborn, W., Supersturcture in the bifurcation set of the duffing equation, Phys Lett A, 107, 351-355 (1985)
[16] Rajasekar, S.; Murali, K., Resonance behaviors and jump phenomena in a two coupled duffing-Van der pol oscillators, Chaos, Solitons & Fractals, 19, 925-934 (2004) · Zbl 1058.34048
[17] Rio, E. D.; Velarde, M. G.; Lozanno, A. R., Long time date series and difficulties with characterization of chaotic attractors: a case with intermittency III, Chaos, Solitons & Fractals, 4, 12, 2169-2179 (1994) · Zbl 0817.34022
[18] Sander, J. A.; Verhulst, F., Averaging methods in nonlinear dynamical systems (1987), Springer: Springer Berlin
[19] de Souza, S. L.T.; Caldas, I. L.; Viana, R. L.; Baathazar, J. M.; Brasil, R. M.L. R.F., Basins of attraction changes by amplitude constraining of oscillators with limited power supply, Chaos, Solitons & Fractals, 26, 1211-1220 (2005) · Zbl 1093.37516
[20] Wakako, M.; Chieko, M.; Koi-ichi, H.; Yoshi, H. I., Integrable duffing’s maps and solutions of he duffing equation, Chaos, Solitons & Fractals, 2, 271-280 (1992)
[21] Wiggins, S., Introduction to Applied Nonlinear Dynamical Systems and Chaos (1990), Springer-Verlag: Springer-Verlag New York · Zbl 0701.58001
[22] Yagasaki, K., Second-order averaging and chaos in quasiperiodically forced weakly nonlinear oscillators, Physicia D, 44, 445-458 (1990) · Zbl 0706.58037
[23] Yagasaki, K., Homoclinic motions and chaos in the quasiperidically forced Van der Pol-duffing oscillator with single well potential, Proc R Soc Lond A, 445, 597-617 (1994) · Zbl 0817.70015
[24] Yagasaki, K., Detecting of bifurcation structures by higher-order averaging for duffing’s equation, Nonlinear Dynam, 18, 129-158 (1999) · Zbl 0944.70017
[25] Yagasaki, K., Degenerate resonances in forced oscillators, Discret Contin Dynam Sys Ser B, 3, 3, 423-438 (2003) · Zbl 1126.34327
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.