×

On factorization of bicomplex meromorphic functions. (English) Zbl 1168.30024

Sabadini, Irene (ed.) et al., Hypercomplex analysis. Selected papers of the 6th ISAAC conference, Ankara, Turkey, August 13–18, 2007. Basel: Birkhäuser (ISBN 978-3-7643-9892-7/hbk; 978-3-7643-9893-4/e-book). Trends in Mathematics, 55-68 (2009).
Summary: In this paper the factorization theory of meromorphic functions of one complex variable is promoted to bicomplex meromorphic functions. Many results of the one complex variable case are seen to hold in the bicomplex case, and it is found that there are results for meromorphic functions of one complex variable which are not true for bicomplex meromorphic functions. In particular, we show that for any bicomplex transcendental meromorphic function \(F\), there exists a bicomplex meromorphic function \(G\) such that \(GF\) is prime even if the set \[ \{ a \in \mathbb{T}: F(w) + a\varphi (w) \text{ is not prime}\} \] is empty or of cardinality \(\mathfrak N_1\) for any non-constant fractional linear bicomplex function \(\varphi\). Moreover, as a specific application, we obtain six additional possible forms of factorization of the complex cosine cos \(z\) in the bicomplex space.
For the entire collection see [Zbl 1159.30003].

MSC:

30G35 Functions of hypercomplex variables and generalized variables
30D30 Meromorphic functions of one complex variable (general theory)
Full Text: DOI

References:

[1] Baoqin, L.; Guodong, S., On Goldbach problem concerning factorization of meromorphic functions, Acta Math. Sinica, 5, 4, 337-344 (1997) · Zbl 0691.30018 · doi:10.1007/BF02107711
[2] Bergweiler, W., On factorization of certain entire functions, J. Math.Anal. Appl., 193, 1003-1007 (1995) · Zbl 0830.30015 · doi:10.1006/jmaa.1995.1281
[3] C.T. Chuang and C.C. Yang, Fix-points and Factorization of meromorphic functions, World Scientific, 1990. · Zbl 0743.30027
[4] Fleury, N.; de Traubenberg, M. R.; Yamaleev, R. M., Commutative extended complex numbers and connected trigonometry, J. Math. Ann. and Appl., 180, 431-457 (1993) · Zbl 0795.30042 · doi:10.1006/jmaa.1993.1410
[5] Gross, F., Factorization of Meromorphic Function (1972), Washington, D. C.: U.S. Government Printing Office, Washington, D. C. · Zbl 0266.30006
[6] Gross, F.; Yang, C. C.; Osgoods, C., Primeable entire function, Nagoya Math J, 51, 123-130 (1973) · Zbl 0244.30027
[7] Gross, F., On factorization of meromorphic functions, Trans. Amer. Math. Soc., 131, 215-222 (1968) · Zbl 0159.36702 · doi:10.2307/1994691
[8] Jin, Q.; Yongxing, G., On Factorization of Meromorphic Function, Acta Math. Sinica, 13, 4, 509-512 (1997) · Zbl 0909.30020 · doi:10.1007/BF02559943
[9] Ng, T. W., Imprimitive parameterization of analytic curves and factorization of entire functions, J. London Math. Soc., 64, 385-394 (2001) · Zbl 1014.30019 · doi:10.1112/S0024610701002472
[10] Ng, T. W.; Yang, C. C., On the common right factors of meromorphic functions, Bull. Austral. Math. Soc., 55, 395-403 (1997) · Zbl 1157.30313 · doi:10.1017/S0004972700034067
[11] Ng, T. W.; Yang, C. C., Certain criteria on the existence of transcendental entire common right factor, Analysis, 17, 387-393 (1997) · Zbl 0890.30020
[12] Ng, T. W.; Yang, C. C., On the composition of prime transcendental function and a prime polynomial, Pacific J. Math., 193, 131-141 (2000) · Zbl 1016.30021 · doi:10.2140/pjm.2000.193.131
[13] Noda, Y., On factorization of entire function, Kodai Math J, 4, 480-494 (1981) · Zbl 0491.30015 · doi:10.2996/kmj/1138036430
[14] Price, G. B., An introduction to multicomplex spaces and functions (1991), New York: Marcel Dekker Inc., New York · Zbl 0729.30040
[15] Rochon, D., A bicomplex Riemann zeta function, Tokyo J. Math., 27, 357-369 (2004) · Zbl 1075.30025 · doi:10.3836/tjm/1244208394
[16] Rochon, D., A Bloch Constant for Hyperholomorphic Functions, Complex Variables, 44, 85-101 (2001) · Zbl 1022.30048
[17] Rochon, D., A generalized Mandelbrot set for bicomplex numbers, Fractal, 8, 355-368 (2000) · Zbl 0969.37021 · doi:10.1142/S0218348X0000041X
[18] Rochon, D., On a relation of bicomplex pseudoanalytic function theory to the complexified stationary Schrödinger equation, Complex Variables, 53, 6, 501-521 (2008) · Zbl 1151.30344
[19] D. Rochon, Sur une généralisation des nombres complexes: les tétranombres, M. Sc. Université de Montréal, 1997.
[20] Rochon, D.; Shapiro, M., On algebraic properties of bicomplex and hyperbolic numbers, Anal. Univ. Oradea, fasc. math., 11, 71-110 (2004) · Zbl 1114.11033
[21] Rochon, D.; Tremblay, S., Bicomplex Quantum Mechanics: I. The Generalized Schrödinger Equation, Adv. App. Cliff. Alg., 12, 2, 231-248 (2004) · Zbl 1169.81339 · doi:10.1007/s00006-004-0015-3
[22] Rochon, D.; Tremblay, S., Bicomplex Quantum Mechanics: II. The Hilbert Space, Adv. App. Cliff. Alg., 16, 2, 135-157 (2006) · Zbl 1142.81010 · doi:10.1007/s00006-006-0008-5
[23] P.C. Rosenbloom, The fix-points of entire functions, Medd. Lunds Univ. Math. Sem. M.Riesz (1952), 187-192. · Zbl 0047.31601
[24] Rudin, W., Real and Complex Analysis (1976), McGraw-Hill: New York, McGraw-Hill
[25] B.V. Shabat, Introduction to Complex Analysis part II: Functions of Several Variables, American Mathematical Society, 1992. · Zbl 0799.32001
[26] Sobczyk, G., The hyperbolic number plane, Coll. Maths. Jour., 26, 4, 268-280 (1995) · doi:10.2307/2687027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.