×

Zeros of Gegenbauer-Sobolev orthogonal polynomials: beyond coherent pairs. (English) Zbl 1168.30004

Symmetrically coherent pairs of measures date back to their introduction by A. Iserles, P. E. Koch, S. P. Nørsett and J. M. Sanz-Serna [J. Approx. Theory 65, No. 2, 151–175 (1991; Zbl 0734.42016)] and have been studied extensively later on. The introduction of the paper under review contains a nice overview of the development relevant to the case of Gegenbauer-Sobolev orthogonality.
In a paper by W. G. M. Groenevelt [J. Approx. Theory 114, No. 1, 115–140 (2002; Zbl 1008.33006)] all possible types of coherent pairs in the Gegenbauer case have been studied and interlacing properties of zeros have been derived.
In the paper under review, the situation is addressed where the pair of measures is not coherent anymore, but the relation is relaxed to the situation of the existence of a recurrence relation connecting the ordinary Gegenbauer polynomials to the Gegenbauer-Sobolev orthogonal polynomials.
The following inner product is studied \[ \begin{split} \langle f,g\rangle = \int_{-1}^1\,f(x)g(x)(1-x^2)^{\lambda-1/2}dx\\ +\int_{-1}^1\,f'(x)g'(x)\left(\kappa_1+ {\kappa_2\over 1+qx^2}\right)(1-x^2)^{\lambda+1/2}dx \\ +\kappa_2M_q\left[f'\left({-1\over\sqrt{-q}}\right)g'\left({-1\over\sqrt{-q}}\right)+ f'\left({1\over\sqrt{-q}}\right)g'\left({-1\over\sqrt{-q}}\right)\right],\end{split}\tag{1} \] where \[ \lambda>-{1\over 2},\;q\geq -1;\;M_q\geq 0\text{ for }-1<q<0\text{ and }M_q=0\text{ for }q\geq 0 \] and \(q,\kappa_1,\kappa_2\) are chosen such that the integral forms above are positive definite inner products when studied separately.
When \(\kappa_1\not= 0\), the pair of measures (one consisting of the first integral and the other of the second integral together with the \(M_q\)-term) is no longer coherent, but nevertheless—triggered by numerical evidence—the authors succeeded in proving interlacing properties when the parameters satisfy \[ \lambda\geq 0,\;q\geq 1\text{ and }\kappa_2\geq\left[{2\lambda +3\over 2\lambda +2}+2(1+q)\right]\kappa_1>0. \eqno{(2)} \]
Finally, in section 5, several theorems on interlacing zeros are given in what the authors call ‘extremal cases’ arising from (1):
- monic polynomials from \(\lim_{\kappa_1\rightarrow\infty}\,{1\over\kappa_1}\,\langle f,g\rangle\),
- monic polynomials from \(\lim_{M_q\rightarrow\infty}\,\langle f,g\rangle\) where \(\kappa_1=0, \;\kappa_2={\kappa\over M_q}\).
A very interesting and well written paper, that shows an interlacing property when leaving the realm of coherent pairs, but (unfortunately?) at the cost of condition (2) on the parameters. You can’t win them all.

MSC:

30C15 Zeros of polynomials, rational functions, and other analytic functions of one complex variable (e.g., zeros of functions with bounded Dirichlet integral)
33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)
33C47 Other special orthogonal polynomials and functions
42C05 Orthogonal functions and polynomials, general theory of nontrigonometric harmonic analysis
Full Text: DOI

References:

[1] Bavinck, H., Meijer, H.G.: Orthogonal polynomials with respect to a symmetric inner product involving derivatives. Appl. Anal. 33, 103–117 (1989) · Zbl 0648.33007 · doi:10.1080/00036818908839864
[2] Bavinck, H., Meijer, H.G.: On orthogonal polynomials with respect to an inner product involving derivatives: zeros and recurrence relations. Indag. Math. 1, 7–14 (1990) · Zbl 0704.42023 · doi:10.1016/0019-3577(90)90028-L
[3] Berti, A.C., Sri Ranga, A.: Companion orthogonal polynomials: some applications. Appl. Numer. Math. 39, 127–149 (2001) · Zbl 1003.42014 · doi:10.1016/S0168-9274(01)00046-0
[4] Bracciali, C.F., Berti, A.C., Sri Ranga, A.: Orthogonal polynomials associated with related measures and Sobolev orthogonal polynomials. Numer. Algorithms 34, 203–216 (2003) · Zbl 1046.42015 · doi:10.1023/B:NUMA.0000005363.32764.d3
[5] Bracciali, C.F., Dimitrov, D.K., Sri Ranga, A.: Chain sequences and symmetric generalized orthogonal polynomials. J. Comput. Appl. Math. 143, 95–106 (2002) · Zbl 1006.33008 · doi:10.1016/S0377-0427(01)00499-X
[6] Chihara, T.S.: An Introduction to Orthogonal Polynomials. Mathematics and its Applications Series. Gordon and Breach, New York (1978) · Zbl 0389.33008
[7] Delgado, A.M., Marcellán, F.: On an extension of symmetric coherent pairs of orthogonal polynomials. J. Comput. Appl. Math. 178, 155–168 (2005) · Zbl 1077.42016 · doi:10.1016/j.cam.2004.02.026
[8] de Bruin, M.G., Groenevelt, W.G.M., Meijer, H.G.: Zeros of Sobolev orthogonal polynomials of Hermite type. Appl. Math. Comput. 132, 135–166 (2002) · Zbl 1024.33004 · doi:10.1016/S0096-3003(01)00183-7
[9] Groenevelt, W.G.M.: Zeros of Sobolev orthogonal polynomials of Gegenbauer type. J. Approx. Theory 114, 115–140 (2002) · Zbl 1008.33006 · doi:10.1006/jath.2001.3643
[10] Iserles, A., Koch, P.E., Nørsett, S.P., Sanz-Serna, J.M.: On polynomials orthogonal with respect to certain Sobolev inner products. J. Approx. Theory 65, 151–175 (1991) · Zbl 0734.42016 · doi:10.1016/0021-9045(91)90100-O
[11] Marcellán, F., Moreno-Balcazar, J.J.: Asymptotics and zeros of Sobolev orthogonal polynomials on unbounded support. Acta Appl. Math. 94, 163–192 (2006) · Zbl 1137.42312 · doi:10.1007/s10440-006-9073-y
[12] Marcellán, F., Pérez, T.E., Piñar, M.A.: Gegenbauer-Sobolev orthogonal polynomials. In: Cuyt, A. (ed.) Nonlinear Numerical Methods and Rational Approximation. Math. Appl., vol. 296, pp. 71–82. (1994) · Zbl 0815.33008
[13] Meijer, H.G.: Determination of all coherent pairs. J. Approx. Theory 89, 321–343 (1997) · Zbl 0880.42012 · doi:10.1006/jath.1996.3062
[14] Meijer, H.G., de Bruin, M.G.: Zeros of Sobolev orthogonal polynomials following from coherent pairs. J. Comput. Appl. Math. 139, 253–274 (2002) · Zbl 1005.42015 · doi:10.1016/S0377-0427(01)00421-6
[15] Szego, G.: Orthogonal Polynomials, 4th edn. Amer. Math. Soc. Colloq. Publ., vol. 23. Am. Math. Soc., Providence (1975)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.