×

Some inertia theorems in Euclidean Jordan algebras. (English) Zbl 1168.15003

Summary: This paper deals with some inertia theorems in Euclidean Jordan algebras. First, based on the continuity of eigenvalues, we give an alternate proof of Kaneyuki’s generalization of Sylvester’s law of inertia in simple Euclidean Jordan algebras. As a consequence, we show that the cone spectrum of any quadratic representation with respect to a symmetric cone is finite. Second, we present Ostrowski-Schneider type inertia results in Euclidean Jordan algebras. In particular, we relate the inertias of objects \(a\) and \(x\) in a Euclidean Jordan algebra when \(L_a(x)>0\) or \(S_a(x)>0\), where \(L_a\) and \(S_a\) denote Lyapunov and Stein transformations, respectively.

MSC:

15A18 Eigenvalues, singular values, and eigenvectors
17C55 Finite-dimensional structures of Jordan algebras
17C20 Simple, semisimple Jordan algebras
Full Text: DOI

References:

[1] Baes, M., Convexity and differentiability properties of spectral functions and spectral mappings on Euclidean Jordan algebras, Linear Algebra Appl., 422, 664-700 (2007) · Zbl 1138.90018
[2] Bhatia, R., Matrix Analysis. Matrix Analysis, Springer Graduate Texts in Mathematics (1997), Springer-Verlag: Springer-Verlag New York
[3] Carlson, D.; Schneider, H., Inertia theorems for matrices: the semidefinite case, J. Math. Anal. Appl., 6, 430-446 (1963) · Zbl 0192.13402
[4] Damm, T., Positive groups on \(H^n\) are completely positive, Linear Algebra Appl., 393, 127-137 (2004) · Zbl 1073.47044
[5] Datta, B. N., Stability and inertia, Linear Algebra Appl., 302-303, 563-600 (1999) · Zbl 0972.15009
[6] Faraut, J.; Korányi, A., Analysis on Symmetric Cones (1994), Clarendon Press: Clarendon Press Oxford · Zbl 0841.43002
[7] Gowda, M. S.; Sznajder, R., Automorphism invariance of \(P\) and GUS-properties of linear transformations on Euclidean Jordan algebras, Math. Oper. Res., 31, 109-123 (2006) · Zbl 1168.90620
[8] Gowda, M. S.; Sznajder, R., Some global uniqueness and solvability results for linear complementarity problems over symmetric cones, SIAM J. Optim., 18, 461-481 (2007) · Zbl 1153.90019
[9] Gowda, M. S.; Sznajder, R.; Tao, J., Some \(P\)-properties for linear transformations on Euclidean Jordan algebras, Linear Algebra Appl., 393, 203-232 (2004) · Zbl 1072.15002
[10] Gowda, M. S.; Tao, J., \(Z\)-transformations on proper and symmetric cones, Math. Program. Ser. B, 117, 195-221 (2009) · Zbl 1167.90022
[11] Hirzebruch, U., Der min-max-satz von E. Fischer für formal-reelle Jordan-algebren, Math. Annu., 186, 65-69 (1970) · Zbl 0183.31103
[12] Horn, R. A.; Johnson, C. R., Matrix Analysis (1985), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0576.15001
[13] Iusem, A.; Seeger, A., On convex cones with infinitely many critical angles, Optimization, 56, 115-128 (2007) · Zbl 1121.52008
[14] Kaneyuki, S., The Sylvester’s law of inertia for Jordan algebras, Proc. Japan Acad., 64, 311-313 (1988) · Zbl 0678.17017
[15] Kaneyuki, S., The Sylvester’s law of inertia in simple graded Lie algebras, J. Math. Soc. Japan, 50, 593-614 (1998) · Zbl 0939.17009
[16] Loewy, R., An inertia theorem for Lyapunov’s equation and the dimension of controllability space, Linear Algebra Appl., 260, 1-7 (1997) · Zbl 0894.93018
[17] A. Lyapunov, Probléme génerale de la stabilité du mouvement, Comm. Soc. Math. Kharkov (1892), Annals of Math. Studies, vol. 17, Princeton University Press, Princeton, 1947.; A. Lyapunov, Probléme génerale de la stabilité du mouvement, Comm. Soc. Math. Kharkov (1892), Annals of Math. Studies, vol. 17, Princeton University Press, Princeton, 1947.
[18] Ostrowski, A., A quantitative formulation of Sylvester’s law of inertia II, Proc. Nat. Acad. Sci. USA, 46, 859-862 (1960) · Zbl 0095.01205
[19] Ostrowski, A.; Schneider, H., Some theorems on the inertia of general matrices, J. Math. Anal. Appl., 4, 72-84 (1962) · Zbl 0112.01401
[20] Rudin, W., Functional Analysis (1973), McGraw-Hill Book Company: McGraw-Hill Book Company New York · Zbl 0253.46001
[21] Schmieta, S. H.; Alizadeh, F., Extension of primal-dual interior point algorithms to symmetric cones, Math. Prog. Ser. A, 96, 2-3, 409-438 (2003) · Zbl 1023.90083
[22] Schneider, H., Positive operators and an inertia theorem, Numer. Math., 7, 11-17 (1965) · Zbl 0158.28003
[23] Seeger, A., Eigenvalue analysis of equilibrium processes defined by linear complementarity conditions, Linear Algebra Appl., 292, 1-14 (1999) · Zbl 1016.90067
[24] Seeger, A.; Torki, M., On eigenvalues induced by a cone constraint, Linear Algebra Appl., 372, 181-206 (2003) · Zbl 1046.15008
[25] Taussky, O., A generalization of theorem of Lyapunov, J. Soc. Ind. Appl. Math., 9, 640-643 (1961) · Zbl 0108.01202
[26] J. Tao, Lyapunov-like transformations on \(L^n\), private communication, May 5, 2006.; J. Tao, Lyapunov-like transformations on \(L^n\), private communication, May 5, 2006.
[27] Uherka, D. J.; Sergott, A. M., On the continuous dependence of the roots of a polynomial on its coefficients, Am. Math. Monthly, 84, 368-370 (1977) · Zbl 0434.32003
[28] Wimmer, H. K., On the Ostrowski-Schneider inertia theorem, J. Math. Anal. Appl., 41, 164-169 (1973) · Zbl 0251.15011
[29] Y. Zhou, M.S. Gowda, On the finiteness of the cone spectrum of certain transformations on Euclidean Jordan algebras, Research Report, Department of Mathematics and Statistics, University of Maryland, Baltimore County, Baltimore, Maryland, USA, October 2007.; Y. Zhou, M.S. Gowda, On the finiteness of the cone spectrum of certain transformations on Euclidean Jordan algebras, Research Report, Department of Mathematics and Statistics, University of Maryland, Baltimore County, Baltimore, Maryland, USA, October 2007. · Zbl 1168.90013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.