×

Effects of structural and material length scales on stress-induced martensite macro-domain patterns in tube configurations. (English) Zbl 1167.74526

Summary: This paper studies the effects of structural and material length scales on the equilibrium domain patterns in thin-walled long tube configurations during stress-induced elastic phase transition under displacement-controlled quasi-static isothermal stretching. A nonconvex and nonlocal continuum model is developed and implemented into a finite element code to simulate the domain formation and evolution during the phase transition. The morphology and evolution of the macro-domains in different tube geometries are investigated by both analytical (energy analysis) and numerical (nonlocal finite element) methods. Energy minimization is used as the principle to explain the experimentally observed macroscopic domain patterns in a NiTi polycrystal tube. It is found that the domain pattern, as the minimizer of the system energy, is governed by the relative values of the material length scale \(g\), tube-wall thickness \(h\) and tube radius \(R\) through two nondimensional factors: \(h/R\) and \(g/R\). Physically, \(h/R\) and \(g/R\) serve as the weighting factors of bending energy and domain-wall energy over the membrane energy in the minimization of the total energy of the tube system. Theoretical predictions of the effects of these length scales on the domain pattern are quantified and confirmed by the computational parametric study. They all agree qualitatively well with the available experimental observations.

MSC:

74N05 Crystals in solids
74S05 Finite element methods applied to problems in solid mechanics
74G65 Energy minimization in equilibrium problems in solid mechanics
Full Text: DOI

References:

[1] Abeyaratne, R.; Bhattacharya, K.; Knowles, J. K.: Strain-energy functions with multiple local minima: modeling phase transformations using finite thermoelasticity, Nonlinear elasticity: theory and application, 433-490 (2002) · Zbl 0993.74047
[2] Abeyaratne, R.; Chu, C.; James, R. D.: Kinetics of materials with wiggly energies: theory and application to the evolution of twinning microstructures in a cu – al – ni shape memory ally, Philosophical magazine A 73, 457-497 (1996)
[3] Abeyaratne, R.; Knowles, J. K.: Implications of viscosity and strain-gradient effects for the kinetics of propagating phase boundaries in solids, SIAM journal on applied mathematics 51, No. 5, 1205-1221 (1991) · Zbl 0764.73013 · doi:10.1137/0151061
[4] Abeyaratne, R.; Knowles, J. K.: A continuum model of a thermoelastic solid capable of undergoing phase transitions, Journal of the mechanics and physics of solids 41, 541-571 (1993) · Zbl 0825.73058 · doi:10.1016/0022-5096(93)90048-K
[5] Bales, G. S.; Gooding, R. J.: Interfacial dynamics at a first-order phase transition involving strain: dynamical twin formation, Physical review letters 67, 3412-3415 (1991)
[6] Barsch, G. R.; Krumhansl, J. A.: Twin boundaries in ferroelastic media without interface dislocations, Physical review letters 53, 1069-1072 (1984)
[7] Barsch, G. R.; Krumhansl, J. A.: Nonlinear and nonlocal continuum model of transformation precursors in martensites, Metallurgical transactions 19A, 761-775 (1988)
[8] Begley, M. R.; Hutchinson, J. W.: The mechanics of size-dependent indentation, Journal of the mechanics and physics of solids 46, No. 10, 2049-2068 (1998) · Zbl 0967.74043 · doi:10.1016/S0022-5096(98)00018-0
[9] Bhattacharya, K.: Phase boundary propagation in a heterogeneous body, Proceedings of the royal society of London A 455, 757-766 (1999) · Zbl 0990.74047 · doi:10.1098/rspa.1999.0333
[10] Biot, M. A.: Thermoelasticity and irreversible thermodynamics, Journal of applied physics 27, 240-253 (1956) · Zbl 0071.41204 · doi:10.1063/1.1722351
[11] Brinson, L. C.; Schmidt, I.; Lammering, R.: Stress-induced transformation behavior of a polycrystalline niti shape memory alloy: micro and macromechanical investigations via in situ optical microscopy, Journal of the mechanics and physics of solids 52, 1549-1571 (2004) · Zbl 1159.74300 · doi:10.1016/j.jmps.2004.01.001
[12] Cahn, J. W.; Hilliard, J. E.: Free energy of a nonuniform system I. Interfacial free energy, The journal of chemical physics 28, No. 2, 258-267 (1958)
[13] Charlotte, M.; Truskinovky, L.: Towards multi-scale continuum elasticity theory, Continuum mechanics and thermodynamics 20, 133-161 (2008) · Zbl 1172.74006 · doi:10.1007/s00161-008-0075-z
[14] Ciarlet, P. G.: Mathematical elasticity, Theory of plates (1997) · Zbl 0888.73001
[15] Curnoe, S. H.; Jacobs, A. E.: Time evolution of tetragonal – orthorhombic ferroelastics, Physical review B 64, 064101 (2001)
[16] Emmerich, H.: The diffuse interface approach in materials science: thermodynamic concepts and applications of phase-field models, (2003) · Zbl 1039.74001
[17] Falk, F.: Model free energy, mechanics, and thermodynamics of shape memory alloys, Acta metallurgica 28, 1773-1780 (1980)
[18] Falk, F.: Landau theory and martensitic phase transitions, Journal de physique IV, colloque 4, 3-15 (1982)
[19] Falk, F.: Ginzbur – Landau theory of static domain-walls in shape-memory alloys, Z. physik B – condensed matter 51, 177-185 (1983)
[20] Favier, D.; Louche, H.; Schlosser, P.; Orgeas, L.; Vacher, P.; Debove, L.: Homogeneous and heterogeneous deformation mechanisms in an austenitic polycrystalline ti – 50.8 at.% ni thin tube under tension – investigation via temperature and strain fields measurements, Acta materialia 55, 5310-5322 (2007)
[21] Feng, P.; Sun, Q. P.: Experimental investigation on macroscopic domain formation and evolution in polycrystalline niti microtubing under mechanical force, Journal of the mechanics and physics of solids 54, 1568-1603 (2006)
[22] Fung, Y. C.; Tong, P.: Classical and computational solid mechanics, (2001) · Zbl 0984.74001
[23] Gollub, J. P.; Langer, J. S.: Pattern formation in nonequilibrium physics, Reviews of modern physics 71, S396-S403 (1999)
[24] He, Y.J., Sun, Q.P., 2006. Instability and hysteresis in thermoelastic tension strips, in: Q.P. Sun, P. Tong (Eds.), Proceedings of the IUTAM Symposium on Size Effects on Material and Structure Behavior at Micro- and Nanometer-Scales Held in Hong Kong, June 2004, Kluwer Academic Publisher, pp. 227 – 238.
[25] Jacobs, A. E.; Curnoe, S. H.; Desai, R. C.: Simulations of cubic – tetragonal ferroelastics, Physical review B 68, 224104 (2003)
[26] James, R. D.: Displacive phase transformations in solids, Journal of the mechanics and physics of solids 34, 359-394 (1986) · Zbl 0585.73198 · doi:10.1016/0022-5096(86)90008-6
[27] Johnson, W. C.; Cahn, J. W.: Elastically induced shape bifurcations of inclusions, Acta metallurgica 32, 1925 (1984)
[28] Le, K. C.: Vibrations of shells and rods, (1999) · Zbl 0933.74003
[29] Leo, P. H.; Shield, T. W.; Bruno, O. P.: Transient heat transfer effects on the pseudoelastic behavior of shape-memory wires, Acta metallurgica et materialia 41, 2477-2485 (1993)
[30] Li, Z. Q.; Sun, Q. P.: The initiation and growth of macroscopic martensite band in nano-grained niti microtubes under tension, International journal of plasticity 18, 1481-1498 (2002)
[31] Liakos, J. K.; Saunders, G. A.: Application of the Landau theory to elastic phase transitions, Philosophical magazine A 46, 217-242 (1982)
[32] Mindlin, R. D.: Second gradient of strain and surface tension in linear elasticity, International journal of solids and structures 1, 417-438 (1965)
[33] Mindlin, R. D.; Eshel, N. N.: On first strain – gradient theories in linear elasticity, International journal of solids and structures 4, 109-124 (1968) · Zbl 0166.20601 · doi:10.1016/0020-7683(68)90036-X
[34] Miyazaki, S.; Imai, T.; Otsuka, K.; Suzuki, Y.: Luders-like deformation observed in the transformation pseudoelasticity of a ti – ni alloy, Scripta metallurgica 15, 853-856 (1981)
[35] Murnaghan, F. D.: Finite deformation of an elastic solid, (1951) · Zbl 0045.26504
[36] Puglisi, G.; Truskinovsky, L.: Mechanics of a discrete chain with bi-stable elements, Journal of the mechanics and physics of solids 48, 1-27 (2000) · Zbl 0973.74060 · doi:10.1016/S0022-5096(99)00006-X
[37] Puglisi, G.; Truskinovsky, L.: Rate independent hysteresis in a bi-stable chain, Journal of the mechanics and physics of solids 50, 165-187 (2002) · Zbl 1035.74045 · doi:10.1016/S0022-5096(01)00055-2
[38] Puglisi, G.; Truskinovsky, L.: Thermodynamics of rate-independent plasticity, Journal of the mechanics and physics of solids 53, 655-679 (2005) · Zbl 1122.74318 · doi:10.1016/j.jmps.2004.08.004
[39] Rasmussen, K. O.; Lookman, T.; Saxena, A.; Bishop, A. R.; Albers, R. C.; Shenoy, S. R.: Three-dimensional elastic compatibility and varieties of twins in martensites, Physical review letters 87, 055704 (2001)
[40] Reddy, J. N.: Theory and analysis of elastic plates and shells, (2007)
[41] Reid, A. C. E.; Gooding, R. J.: Pattern formation in a 2D elastic solid, Physica A 239, 1-10 (1997)
[42] Shaw, J. A.: Simulations of localized thermo-mechanical behavior in a niti shape memory alloy, International journal of plasticity 16, 541-562 (2000) · Zbl 1043.74525 · doi:10.1016/S0749-6419(99)00075-3
[43] Shaw, J. A.: A thermomechanical model for a 1-D shape memory alloy wire with propagating instabilities, International journal of solids and structures 39, 1275-1305 (2002) · Zbl 1035.74044 · doi:10.1016/S0020-7683(01)00242-6
[44] Shaw, J. A.; Kyriakides, S.: Thermomechanical aspects of niti, Journal of the mechanics and physics of solids 43, 1243-1281 (1995)
[45] Shaw, J. A.; Kyriakides, S.: On the nucleation and propagation of phase transformation fronts in a niti alloy, Acta materialia 45, 683-700 (1997)
[46] Shaw, J. A.; Kyriakides, S.: Initiation and propagation of localized deformation in elasto-plastic strips under uniaxial tension, International journal of plasticity 43, 837-871 (1998)
[47] Shield, T. W.; Leo, P. H.; Grebner, W. C. C.: Quasi-static extension of shape memory wires under constant load, Acta materialia 45, 67-74 (1997)
[48] Sittner, P.; Liu, Y.; Novak, V.: On the origin of luders-like deformation of niti shape memory alloys, Journal of the mechanics and physics of solids 53, 1719-1746 (2005) · Zbl 1120.74402 · doi:10.1016/j.jmps.2005.03.005
[49] Sun, Q. P.; He, Y. J.: A multiscale continuum model of the grain-size dependence of the stress hysteresis in shape memory alloy polycrystals, International journal of solids and structures 45, 3868-3896 (2008) · Zbl 1169.74519 · doi:10.1016/j.ijsolstr.2007.12.008
[50] Sun, Q. P.; Hwang, K. C.: Micromechanics modelling for the constitutive behavior of polycrystalline shape memory alloys – I. Derivation of general relations, Journal of the mechanics and physics of solids 41, 1-17 (1993) · Zbl 0767.73062 · doi:10.1016/0022-5096(93)90060-S
[51] Sun, Q. P.; Li, Z. Q.: Phase transformation in superelastic niti polycrystalline micro-tube under tension and torsion – from localization to homogeneous deformation, International journal of solids and structures 39, 3797-3809 (2002)
[52] Sun, Q. P.; Xu, T. T.; Zhang, X. Y.: On deformation of A-M interface in single crystal shape memory alloys and some related issues, Transactions of ASME, journal of engineering materials and technology 121, 38-43 (1999)
[53] Triantafyllidis, N.; Aifantis, E. C.: A gradient approach to localization of deformation I. Hyperelastic materials, Journal of elasticity 16, 225-237 (1986) · Zbl 0594.73044 · doi:10.1007/BF00040814
[54] Triantafyllidis, N.; Bardenhagen, S.: On higher order gradient continuum theories in 1-D nonlinear elasticity. Derivation from and comparison to the corresponding discrete models, Journal of elasticity 33, 259-293 (1993) · Zbl 0819.73008 · doi:10.1007/BF00043251
[55] Truskinovsky, L.: About the ”normal growth” approximation in the dynamical theory of phase transitions, Continuum mechanics and thermodynamics 6, 185-208 (1994) · Zbl 0877.73006 · doi:10.1007/BF01135253
[56] Ugural, A. C.: Stresses in plates and shells, (1999)
[57] Vainchtein, A.: Stick – slip interface motion as a singular limit of the viscosity – capillarity model, Mathematics and mechanics of solids 6, 323-341 (2001) · Zbl 1057.74028 · doi:10.1177/108128650100600307
[58] Zienkiewicz, O. C.; Taylor, R. L.: The finite element method, (2000) · Zbl 0991.74002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.