×

Torsion of cylindrically orthotropic elastic circular bars with radial inhomogeneity: some exact solutions and end effects. (English) Zbl 1167.74476

Summary: Torsion of elastic circular bars of radially inhomogeneous, cylindrically orthotropic materials is studied with emphasis on the end effects. To examine the conjecture of Saint-Venant’s torsion, we consider torsion of circular bars with one end fixed and the other end free on which tractions that results in a pure torque are prescribed arbitrarily over the free end surface. Exact solutions that satisfy the prescribed boundary conditions point by point over the entire boundary surfaces are derived in a unified manner for cylindrically orthotropic bars with or without radial inhomogeneity and for their counterparts of Saint-Venant’s torsion. Stress diffusion due to the end effect is examined in the light of the exact solutions.

MSC:

74K10 Rods (beams, columns, shafts, arches, rings, etc.)
74E05 Inhomogeneity in solid mechanics
Full Text: DOI

References:

[1] Chen, T.; Wei, C. J.: Saint-Venant torsion of anisotropic shafts: theoretical framework, extremal bounds and affine transformations, Quarterly journal of mechanics and applied mathematics 58, 269-287 (2005) · Zbl 1072.74044 · doi:10.1093/qjmamj/hbi013
[2] Christensen, R. M.: Properties of carbon fibers, Journal of the mechanics and physics of solids 42, 681-695 (1994)
[3] Dong, S. B.; Kosmatka, J. B.; Lin, H. C.: On Saint-Venant’s problem for an inhomogeneous, anisotropic cylinder. Part I: Methodology for Saint-Venant’s solutions, Journal of applied mechanics 68, 376-381 (2001) · Zbl 1110.74419 · doi:10.1115/1.1363598
[4] Folkes, M. J.; Arridge, R. G. C.: The measurement of shear modulus in highly anisotropic materials: the validity of st Venant’s principle, Journal of physics D: Applied physics 8, 1053-1064 (1975)
[5] Hildebrand, F. B.: Advanced calculus for applications, (1976) · Zbl 0333.00003
[6] Horgan, C. O.: Some remarks on Saint-Venant’s principle for transversely isotropic composites, Journal of elasticity 2, 335-339 (1972)
[7] Horgan, C. O.: Saint-Venant end effects in composites, Journal of composite materials 16, 411-422 (1982)
[8] Horgan, C. O.: Recent developments concerning Saint-Venant’s principle: an update, Applied mechanics reviews 42, 295-303 (1989)
[9] Horgan, C. O.: Recent developments concerning Saint-Venant’s principle: a second update, Applied mechanics reviews 49, S101-S111 (1996)
[10] Horgan, C. O.; Carlsson, L. A.: Saint-Venant end effects for anisotropic materials, Comprehensive composite materials 5, 5-21 (2000)
[11] Horgan, C. O.; Chan, A. M.: Torsion of functionally graded isotropic linearly elastic bars, Journal of elasticity 52, 181-199 (1999) · Zbl 0947.74029 · doi:10.1023/A:1007544011803
[12] Horgan, C. O.; Miller, K. L.: Saint-Venant end effects for plane deformations of elastic composites, Mechanics of composite materials and structures 2, 203-214 (1995)
[13] Horgan, C. O.; Simmonds, J. G.: Saint-Venant end effects in composite structures, Composites engineering 4, 279-286 (1994)
[14] Huang, C. H.; Dong, S. B.: Analysis of laminated circular cylinders of materials with the most general form of cylindrical anisotropy, part I: Axially symmetric deformations, International journal of solids and structures 38, 6163-6182 (2001) · Zbl 1008.74024 · doi:10.1016/S0020-7683(00)00374-7
[15] Kosmatka, J. B.; Lin, H. C.; Dong, S. B.: On Saint-Venant’s problem for an inhomogeneous, anisotropic cylinder. Part II: Cross-sectional properties, Journal of applied mechanics 68, 382-391 (2001) · Zbl 1110.74513 · doi:10.1115/1.1365152
[16] Lekhnitskii, S. G.: Theory of elasticity of an anisotropic body, (1981) · Zbl 0467.73011
[17] Lin, H. C.; Dong, S. B.; Kosmatka, J. B.: On Saint-Venant’s problem for an inhomogeneous, anisotropic cylinder. Part III: End effects, Journal of applied mechanics 68, 392-398 (2001) · Zbl 1110.74561 · doi:10.1115/1.1363597
[18] Rooney, F. J.; Ferrari, M.: Torsion and flexure of inhomogeneous elements, Composite engineering 5, 901-911 (1995)
[19] Scalpato, M. R.; Horgan, C. O.: Saint-Venant decay rates for an isotropic inhomogeneous linearly elastic solid in anti-plane shear, Journal of elasticity 48, 145-166 (1997) · Zbl 0912.73010 · doi:10.1023/A:1007408204283
[20] Sokolnikoff, I. S.: Mathematical theory of elasticity, (1956) · Zbl 0070.41104
[21] Tarn, J. Q.: Exact solutions for functionally graded anisotropic cylinders subjected to thermal and mechanical loads, International journal of solids and structures 38, 8189-8206 (2001) · Zbl 1016.74020 · doi:10.1016/S0020-7683(01)00182-2
[22] Tarn, J. Q.: Exact solutions of a piezoelectric circular tube or bar under extension, torsion, pressuring, shearing, uniform electric loadings and temperature change, Proceedings of the royal society of London A 458, 2349-2367 (2002) · Zbl 1019.74012 · doi:10.1098/rspa.2002.0969
[23] Tarn, J. Q.: A state space formalism for anisotropic elasticity. Part II: Cylindrical anisotropy, International journal of solids and structures 39, 5157-5172 (2002) · Zbl 1087.74509 · doi:10.1016/S0020-7683(02)00412-2
[24] Tarn, J. Q.; Chang, H. H.: Extension, torsion, bending, pressuring and shearing of piezoelectric circular cylinders with radial inhomogeneity, Journal of intelligent material systems and structures 16, 631-641 (2005)
[25] Tarn, J. Q.; Wang, Y. M.: Laminated composite tubes under extension, torsion, bending, shearing and pressuring: a state space approach, International journal of solids and structures 38, 9053-9075 (2001) · Zbl 1037.74016 · doi:10.1016/S0020-7683(01)00170-6
[26] Ting, T. C. T.: New solutions to pressuring, shearing, torsion, and extension of a cylindrically anisotropic elastic circular tube or bar, Proceedings of the royal society of London A 455, 3527-3542 (1999) · Zbl 0967.74037 · doi:10.1098/rspa.1999.0464
[27] Watson, G. N.: A treatise on the theory of Bessel functions, (1995) · Zbl 0849.33001
[28] Yang, Y. Y.: Time-dependent stress analysis in functionally graded materials, International journal of solids and structures 37, 7593-7608 (2000) · Zbl 0984.74006 · doi:10.1016/S0020-7683(99)00310-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.