×

Orthotropic rotation-free basic thin shell triangle. (English) Zbl 1166.74042

Summary: We develop a methodology for geometrically nonlinear analysis of orthotropic shells using a rotation-free shell triangular element. The method is based on the computation of strain and stress fields in the principal fiber orientation of the material. Details of the definition of the fiber orientation in a mesh of triangles and of the general formulation of the orthotropic rotation-free element are given. The accuracy of the formulation is demonstrated in examples of application.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74K25 Shells
74E10 Anisotropy in solid mechanics

Software:

FEAPpv

References:

[1] Ugural AC (1981) Stresses in plates and shells. McGraw-Hill, New York
[2] Nay RA, Utku S (1972) An alternative to the finite element method. Var Methods Eng 1(3): 63–74
[3] Barnes MR (1977) Form finding and analysis of tension space structures by dynamic relaxation. PhD thesis, Department of Civil Engineering, The City University, London
[4] Hampshire JK, Topping BHV, Chan HC (1992) Three node triangular elements with one degree of freedom per node. Eng Comput 9: 49–62 · doi:10.1108/eb023848
[5] Oñate E, Cervera M (1993) Derivation of thin plate elements with one degree of freedom per node. Eng Comput 10: 543–561 · doi:10.1108/eb023924
[6] Brunet M, Sabourin F (1994) Prediction of necking and wrinkles with a simplified shell element in sheet forming. In: Kröplin B (ed) Proceedings of the international conference of metal forming simulation in industry II, pp 27–48
[7] Oñate E, Zárate F (2000) Rotation-free triangular plate and shell elements. Int J Numer Methods Eng 47(1–3): 557–603 · Zbl 0968.74070 · doi:10.1002/(SICI)1097-0207(20000110/30)47:1/3<557::AID-NME784>3.0.CO;2-9
[8] Oñate E, Cendoya P, Miquel J (2002) Non linear explicit dynamic analysis of shells using the BST rotation-free triangle. Eng Comput 19(6): 662–706 · Zbl 1140.74557 · doi:10.1108/02644400210439119
[9] Rojek J, Oñate E, Postek E (1998) Application of explicit codes to simulation of sheet and bulk metal forming processes. J Mater Process Technol 80–81: 620–627 · doi:10.1016/S0924-0136(98)00169-1
[10] Flores FG, Oñate E (2001) A basic thin shell triangle with only translational dofs for large strain plasticity. Int J Numer Methods Eng 51: 57–83 · Zbl 1013.74065 · doi:10.1002/nme.147
[11] Flores FG, Oñate E (2005) Improvements in the membrane behaviour of the three node rotational-free bst shell triangle using an assumed strain approach. Comput Methods Appl Mech Eng 194: 907–932 · Zbl 1112.74510 · doi:10.1016/j.cma.2003.08.012
[12] Oñate E, Flores FG (2005) Advances in the formulation of the rotation-free basic shell triangle. Comput Methods Appl Mech Eng 194: 2406–2443 · Zbl 1083.74048 · doi:10.1016/j.cma.2004.07.039
[13] Cirak F, Ortiz M, Schröeder P (2000) Subdivision surfaces: a new paradigm for thin-shell finite element analysis. Int J Numer Methods Eng 47: 2039–2072 · Zbl 0983.74063 · doi:10.1002/(SICI)1097-0207(20000430)47:12<2039::AID-NME872>3.0.CO;2-1
[14] Cirak F, Ortiz M (2001) Fully c 1-conforming subdivision elements for finite deformation thin-shell analysis. Int J Numer Methods Eng 51: 813–833 · Zbl 1039.74045 · doi:10.1002/nme.182.abs
[15] Brunet M, Sabourin F (2006) Analysis of a rotation-free shell element. Int J Numer Methods Eng 66: 1483–1510 · Zbl 1113.74419 · doi:10.1002/nme.1608
[16] Flores F, Oñate E (2007) A rotation-free shell triangle for the analysis of kinked and branching shells. Int J Numer Methods Eng 69: 1521–1551 · Zbl 1194.74394 · doi:10.1002/nme.1823
[17] Linhard J, Wnchner R, Bletzinger KU (2007) Upgrading membranes to shell. The CEG rotation-free shell element and its application in structural analysis. Finite Element Anal Des 44: 63–74 · doi:10.1016/j.finel.2007.09.001
[18] Gärdsback M, Tibert G (2007) A comparisson of rotation-free shell element for unstructured meshes. Comput Methods Appl Mech Eng 196: 5001–5015 · Zbl 1173.74420 · doi:10.1016/j.cma.2007.06.017
[19] Simo JC, Rifai MS, Fox DD (1990) On a stress resultant geometrically exact shell model. Part IV: variable thickness shells with through-the-time-thickness stretching. Comput Methods Appl Mech Eng 81: 91–126 · Zbl 0746.73016 · doi:10.1016/0045-7825(90)90143-A
[20] Büchter N, Ramm E, Roehl D (1994) Three-dimensional extension of nonlinear shell formulation based on the enhanced assumed strain concept. Int J Numer Methods Eng 37: 2551–2568 · Zbl 0808.73046 · doi:10.1002/nme.1620371504
[21] Pimenta PM, Campello EMB, Wriggers P (2004) A fully nonlinear multi-parameter shell model with thickness variation and a triangular shell finite element. Comput Mech 34: 181–193 · Zbl 1138.74402 · doi:10.1007/s00466-004-0564-2
[22] Zienkiewicz OC, Taylor RL (2005) The finite element method for solid and structural mechanics, 6th edn. Elsevier, Amsterdam
[23] Valdés JG (2007) Nonlinear analysis of orthotropic membrane and shell structures including fluid–structure interaction. PhD thesis, Technical University of Catalunya. http://www.tdcat.cesca.es/TDX-1126107-193535
[24] Clemente R (2007) Structural analysis of historical buildings with localized crack models. PhD thesis (in spanish), Technical University of Catalunya (UPC)
[25] Simo JC, Fox DD, Rifai MS (1990) On a stress resultant geometrically exact shell model. Part III: Computational aspects of the nonlinear theory. Comput Methods Appl Mech Eng 79: 21–70 · Zbl 0746.73015 · doi:10.1016/0045-7825(90)90094-3
[26] Kreja I, Schmidt R, Reddy JN (1997) Finite elements based on a first-order shear deformation moderate rotation theory with applications to the analysis of composite structures. Int J Nonlinear Mech 32(6): 1123–1142 · Zbl 0890.73067 · doi:10.1016/S0020-7462(96)00124-2
[27] Reddy JN (2004) An introduction to nonlinear finite element analysis. Oxford University Press, Oxford
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.