×

Half-space type theorems in warped product spaces with one-dimensional factor. (English) Zbl 1165.53362

Summary: This work states some half-space type theorems in a warped product space of the form \(I \times_{\rho } M\), where \({I \subseteq {\mathbb R}}\) is an open interval and \(M\) is either a compact \(n\)-manifold, or a complete simply connected surface with constant curvature \(c \leq 0\). Such theorems generalize the classical half-space theorem for minimal surfaces in \({\mathbb R}^{3}\), obtained by D. Hoffman and W. H. Meeks III [Invent. Math. 101, No. 2, 373–377 (1990; Zbl 0722.53054)], and recent results for surfaces contained in a slab of \({\mathbb R}\times _{\rho } M\), obtained by M. Dajczer and L. J. Alías [Comment. Math. Helv. 81, No. 3, 653–663 (2006; Zbl 1110.53039)].

MSC:

53C42 Differential geometry of immersions (minimal, prescribed curvature, tight, etc.)
53A10 Minimal surfaces in differential geometry, surfaces with prescribed mean curvature
Full Text: DOI

References:

[1] Abresch U., Rosenberg H.: A Hopf differential for constant mean curvature in S 2{\(\times\)}R and H 2{\(\times\)}R. Acta Math. 193, 141–174 (2004) · Zbl 1078.53053 · doi:10.1007/BF02392562
[2] Alías L., Dajczer M.: Uniqueness of constant mean curvature surfaces properly immersed in a slab. Comment. Math. Helvetici 81, 653–663 (2006) · Zbl 1110.53039 · doi:10.4171/CMH/68
[3] Alías L., Dajczer M.: Normal geodesic graphs of constant mean curvature. J. Differ. Geom. 75, 387–401 (2007) · Zbl 1119.53040
[4] Alías L., Dajczer M.: Constant mean curvature hypersurfaces in warped product spaces. Proc. Edinb. Math. Soc. 50, 511–526 (2007) · Zbl 1141.53051
[5] Birshop R.L., O’Neill B.: Manifolds of negative curvature. Trans. Am. Math. Soc. 145, 1–49 (1969) · doi:10.1090/S0002-9947-1969-0251664-4
[6] Collin P., Hauswirth L., Rosenberg H.: The geometry of finite topology Bryant surfaces. Ann. Math. 153, 623–659 (2001) · Zbl 1066.53019 · doi:10.2307/2661364
[7] Fontenele F., Silva S.: A tangency principle and applications. Illinois J. Math. 45, 213–228 (2001) · Zbl 0987.53026
[8] Hoffman D., Meeks W.: The strong half-space theorem for minimal surfaces. Invent. Math. 101, 373–377 (1990) · Zbl 0722.53054 · doi:10.1007/BF01231506
[9] Mirandola, H.: The influence of the boundary behavior on a hypersurface {\(\Sigma\)} n in H n+1 with mean curvature satisfying: \({{\mathrm sup}_{p\in\Sigma}|H(p)| < 1}\) , preprint
[10] Montiel S.: Unicity of constant mean curvature hypersurfaces in some Riemannian manifolds. Indiana Univ. Math. J. 48, 711–748 (1999) · Zbl 0973.53048 · doi:10.1512/iumj.1999.48.1562
[11] Nelli B., Rosenberg H.: Minimal surfaces in H 2{\(\times\)}R. Bull. Braz. Math. Soc. 33, 263–292 (2002) · Zbl 1038.53011 · doi:10.1007/s005740200013
[12] Nelli, B., Rosenberg, H.: Errata: minimal surfaces in H 2{\(\times\)}R. Bull. Braz. Math. Soc. 33, 263–292 (2002); 38, 661–664 (2007) · Zbl 1038.53011
[13] O’Neill B.: Semi-Riemannian Geometry. Academic Press, New York (1983)
[14] Rodrígues L., Rosenberg H.: Half-space theorems for mean curvature one surfaces in hyperbolic space. Proc. Am. Math. Soc. 126, 2755–2762 (1998) · Zbl 0904.53041 · doi:10.1090/S0002-9939-98-04510-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.