×

Methods of the qualitative theory for the Hindmarsh–Rose model: a case study. A tutorial. (English) Zbl 1165.34364

Summary: Homoclinic bifurcations of both equilibria and periodic orbits are argued to be critical for understanding the dynamics of the Hindmarsh–Rose model in particular, as well as of some square-wave bursting models of neurons of the Hodgkin–Huxley type. They explain very well various transitions between the tonic spiking and bursting oscillations in the model. We present the approach that allows for constructing Poincaré return mapping via the averaging technique. We show that a modified model can exhibit the blue sky bifurcation, as well as, a bistability of the coexisting tonic spiking and bursting activities. A new technique for localizing a slow motion manifold and periodic orbits on it is also presented.

MSC:

34C60 Qualitative investigation and simulation of ordinary differential equation models
34-01 Introductory exposition (textbooks, tutorial papers, etc.) pertaining to ordinary differential equations
34E20 Singular perturbations, turning point theory, WKB methods for ordinary differential equations
34C23 Bifurcation theory for ordinary differential equations
34C37 Homoclinic and heteroclinic solutions to ordinary differential equations
Full Text: DOI

References:

[1] Andronov A. A., Uchenye zapiski Gorkovskogo Universiteta 6 pp 3–
[2] Andronov A. A., International Series of Monographs in Physics 4, in: Theory of Oscillations (1966)
[3] Andronov A. A., Israel Program of Scientific Translation, in: The Theory of Bifurcations of Dynamical Systems on a Plane (1971)
[4] Arnold V. I., Encyclopaedia of Mathematical Sciences, in: Bifurcation Theory, Dynamical Systems V (1984)
[5] Bazhenov M., J. Neurophysiol. 84 pp 1076–
[6] DOI: 10.1007/s101890070012 · doi:10.1007/s101890070012
[7] Belykh V., Int. J. Bifurcation and Chaos 15 pp 1112–
[8] DOI: 10.1103/PhysRevLett.94.188101 · doi:10.1103/PhysRevLett.94.188101
[9] Belykh I. V., Phys. Rev. Lett.
[10] Benoit E., Collect. Math. 32 pp 37–
[11] DOI: 10.1007/BF00198966 · Zbl 0775.92017 · doi:10.1007/BF00198966
[12] DOI: 10.1007/BF02460633 · Zbl 0813.92010 · doi:10.1007/BF02460633
[13] Bertram R., J. Biosci. 25 pp 197–
[14] DOI: 10.1137/050625540 · Zbl 1106.34023 · doi:10.1137/050625540
[15] DOI: 10.1063/1.166358 · Zbl 1056.92502 · doi:10.1063/1.166358
[16] Callot J.-L., C. R. Acad. Sci. 286 pp 1059–
[17] Canavier C. C., J. Neurophysiol. 69 pp 2252–
[18] Channell P., Neurocomputing 70 pp 10–
[19] DOI: 10.1103/PhysRevLett.98.134101 · doi:10.1103/PhysRevLett.98.134101
[20] DOI: 10.1016/S0006-3495(83)84384-7 · doi:10.1016/S0006-3495(83)84384-7
[21] DOI: 10.1016/0167-2789(85)90060-0 · Zbl 0582.92007 · doi:10.1016/0167-2789(85)90060-0
[22] DOI: 10.1007/BF01057418 · Zbl 0703.34050 · doi:10.1007/BF01057418
[23] Coombses S., Bursting: The Genesis of Rhythm in the Neurvous System (2005) · Zbl 1094.92500 · doi:10.1142/5944
[24] Cymbalyuk G. S., Neurocomputing 38 pp 159–
[25] Cymbalyuk G., J. Neurosci. 22 pp 10580–
[26] DOI: 10.1007/s10827-005-0354-7 · doi:10.1007/s10827-005-0354-7
[27] DOI: 10.1007/BF01053531 · Zbl 0782.34042 · doi:10.1007/BF01053531
[28] DOI: 10.1063/1.1482255 · Zbl 1080.92518 · doi:10.1063/1.1482255
[29] Deng B., Chaos 14 · Zbl 1213.37068
[30] DOI: 10.1023/A:1014921628797 · doi:10.1023/A:1014921628797
[31] Dumortier F., Mem. Amer. Math. Soc. 121 pp 101–
[32] DOI: 10.1007/BF00160535 · Zbl 0718.92004 · doi:10.1007/BF00160535
[33] DOI: 10.1016/0022-0396(79)90152-9 · Zbl 0476.34034 · doi:10.1016/0022-0396(79)90152-9
[34] DOI: 10.1063/1.166488 · Zbl 0990.92003 · doi:10.1063/1.166488
[35] DOI: 10.1103/PhysRevE.74.031922 · doi:10.1103/PhysRevE.74.031922
[36] DOI: 10.1070/SM1973v019n01ABEH001741 · doi:10.1070/SM1973v019n01ABEH001741
[37] N. K. Gavrilov and A. L. Shilnikov, Methods of Qualitative Theory of Differential Equations and Related Topics, AMS Transl. Series II 200 (2000) pp. 99–105. · Zbl 0990.37036 · doi:10.1090/trans2/200/09
[38] Gradstein I. S., Dokl. Acad. Sci. URSS 53 pp 391–
[39] DOI: 10.1016/j.physleta.2003.09.077 · Zbl 1038.92007 · doi:10.1016/j.physleta.2003.09.077
[40] DOI: 10.1098/rstb.1993.0121 · doi:10.1098/rstb.1993.0121
[41] Guckenheimer J., Progr. Nonlin. Diff. Eqs. Their Appl. 19 pp 214–
[42] DOI: 10.1016/S0167-2789(99)00225-0 · Zbl 0954.34032 · doi:10.1016/S0167-2789(99)00225-0
[43] DOI: 10.1023/A:1011216131638 · doi:10.1023/A:1011216131638
[44] DOI: 10.1098/rspb.1984.0024 · doi:10.1098/rspb.1984.0024
[45] DOI: 10.1113/jphysiol.1952.sp004764 · doi:10.1113/jphysiol.1952.sp004764
[46] DOI: 10.1016/0960-0779(92)90032-I · Zbl 0766.92006 · doi:10.1016/0960-0779(92)90032-I
[47] DOI: 10.1103/PhysRevE.55.R2108 · doi:10.1103/PhysRevE.55.R2108
[48] DOI: 10.1142/S0218127400000840 · Zbl 1090.92505 · doi:10.1142/S0218127400000840
[49] Izhikevich E. M., IEEE Trans. Neural Networks 12 pp 1063–
[50] DOI: 10.1006/jdeq.1994.1025 · Zbl 0796.34038 · doi:10.1006/jdeq.1994.1025
[51] N. Kopell, Neural Control of Rhythmic Movements in Vertebrates, eds. A. H. Cohen, S. Rossignol and S. Grillner (Wiley, NY, 1998) pp. 23–33.
[52] Kramer M. A., New Dynamics in Cerebeller Purkinje Cells: Torus Canards (2008)
[53] DOI: 10.1137/S0036141099360919 · Zbl 1002.34046 · doi:10.1137/S0036141099360919
[54] DOI: 10.1016/0025-5564(95)00104-2 · Zbl 0844.92025 · doi:10.1016/0025-5564(95)00104-2
[55] Kuznetsov Yu. A., Applied Mathematical Sciences 112, in: Elements of Applied Bifurcation Theory (1998) · Zbl 0914.58025
[56] DOI: 10.1023/A:1023269128622 · doi:10.1023/A:1023269128622
[57] Leontovich E. A., DAN SSSR 74 pp 641–
[58] Lukyanov V., Sov. Math. Dokl. 19 pp 1314–
[59] Malaschenko T., J. Comp. Neurosci.
[60] DOI: 10.1103/PhysRevLett.97.048102 · doi:10.1103/PhysRevLett.97.048102
[61] DOI: 10.1007/978-1-4615-9047-7 · doi:10.1007/978-1-4615-9047-7
[62] Mischenko E. F., Monographs in Contemporary Mathematics, in: Asymptotic Methods in Singularly Perturbed Systems (1984)
[63] Nozdracheva V. P., Diff. Eqs. 18 pp 1098–
[64] Pontryagin L. S., Sov. Math. Dokl. 1 pp 611–
[65] DOI: 10.1007/BFb0074739 · doi:10.1007/BFb0074739
[66] J. Rinzel and B. Ermentrout, Methods of Neural Modeling: From Synapses to Networks, eds. C. Koch and I. Segev (MIT Press, 1989) pp. 135–169.
[67] DOI: 10.1088/0951-7715/2/4/001 · Zbl 0704.58031 · doi:10.1088/0951-7715/2/4/001
[68] DOI: 10.1103/PhysRevLett.92.114102 · doi:10.1103/PhysRevLett.92.114102
[69] DOI: 10.1023/B:JCNS.0000014104.08299.8b · doi:10.1023/B:JCNS.0000014104.08299.8b
[70] Rychlik M., Erg. Th. Dyn. Syst. 10 pp 793–
[71] DOI: 10.1016/0167-2789(93)90292-9 · Zbl 0783.58052 · doi:10.1016/0167-2789(93)90292-9
[72] DOI: 10.1142/S0218127493000933 · Zbl 0885.58080 · doi:10.1142/S0218127493000933
[73] DOI: 10.1142/S0218127403008521 · Zbl 1057.37078 · doi:10.1142/S0218127403008521
[74] Shilnikov A. L., Regular & Chaotic Dyn. 9 pp 1–
[75] DOI: 10.1016/j.physleta.2004.05.062 · Zbl 1134.92314 · doi:10.1016/j.physleta.2004.05.062
[76] DOI: 10.1142/S0218127404010539 · Zbl 1077.37509 · doi:10.1142/S0218127404010539
[77] Shilnikov A. L., Neurocomputing 65 pp 869–
[78] Shilnikov A. L., Phys. Rev. E 71 pp 205–
[79] DOI: 10.1103/PhysRevLett.94.048101 · doi:10.1103/PhysRevLett.94.048101
[80] Shilnikov A. L., Moscow Math. J. 5 pp 205–
[81] Shilnikov A. L., Int. J. Bifurcation and Chaos · Zbl 1222.37033
[82] Shilnikov A. L., J. Chaos 18 · Zbl 1222.37033
[83] Shilnikov L. P., Sov. Math. Dokl. 6 pp 163–
[84] Shilnikov L. P., Comput. Math. Appl. 34 pp 441–
[85] DOI: 10.1142/9789812798596 · doi:10.1142/9789812798596
[86] L. P. Shilnikov and D. V. Turaev, Methods of Qualitative Theory of Differential Equations and Related Topics, AMS Transl. Series II 200 (2000) pp. 165–188. · Zbl 0990.37037 · doi:10.1090/trans2/200/13
[87] DOI: 10.1142/9789812798558 · doi:10.1142/9789812798558
[88] Terman D., J. Nonlin. Sci. 2 pp 133–
[89] Tikhonov A. N., Mat. Sb. 2 pp 193–
[90] Turaev D. V., Dokl. Math. 51 pp 404–
[91] Wang X. J., Physica 62 pp 263–
[92] X. J. Wang and J. Rinzel, The Handbook of Brain Theory and Neural Networks, ed. M. Arbib (MIT Press, 1995) pp. 686–691.
[93] DOI: 10.1016/j.chaos.2005.04.038 · Zbl 1083.37535 · doi:10.1016/j.chaos.2005.04.038
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.