×

Iterated function systems on multifunctions and inverse problems. (English) Zbl 1165.28008

Authors’ abstract: We first consider the problem of defining IFS operators on the space \(\mathcal K_{\mathcal C}\) of non-empty compact and convex subsets of \(\mathbb R^d\). After defining a complete metric on \(\mathcal K_{\mathcal C}\), we construct an IFS operator and show some properties. A notable feature is the definition of a type of weak inner product on \(\mathcal K_{\mathcal C}\). We then define a family of complete metrics on the space of all measurable set-valued functions (with values in \(\mathcal K_{\mathcal C}\)), and extend the weak inner product to this space. Following this, we construct IFS operators on these spaces. We close with a brief discussion of the inverse problem of approximating an arbitrary multifunction by the attractor of an IFS.

MSC:

28B20 Set-valued set functions and measures; integration of set-valued functions; measurable selections
54C60 Set-valued maps in general topology
28A80 Fractals
Full Text: DOI

References:

[1] Aubin, J. P.; Frankowska, H., Set-Valued Analysis (1990), Birkhäuser: Birkhäuser Boston · Zbl 0713.49021
[2] Barnsley, M. F., Fractals Everywhere (1989), Academic Press: Academic Press New York · Zbl 0691.58001
[3] Barnsley, M. F.; Demko, S., Iterated function systems and the global construction of fractals, Proc. R. Soc. Lond. Ser. A, 399, 243-275 (1985) · Zbl 0588.28002
[4] Cabrelli, C. A.; Forte, B.; Molter, U. M.; Vrscay, E. R., Iterated fuzzy set systems: A new approach to the inverse problem for fractals and other sets, J. Math. Anal. Appl., 171, 79-100 (1992) · Zbl 0767.58024
[5] Forte, B.; Mendivil, F.; Vrscay, E. R., IFS operators on integral transforms, (Dekking, M.; Levy-Vehel, J.; Lutton, E.; Tricot, C., Fractals: Theory and Applications in Engineering (1999), Springer-Verlag: Springer-Verlag London) · Zbl 0976.94003
[6] Forte, B.; Vrscay, E. R., Theory of generalized fractal transforms, (Fisher, Y., Fractal Image Encoding and Analysis. Fractal Image Encoding and Analysis, NATO Adv. Study Inst. Ser. F, vol. 159 (1998), Springer-Verlag: Springer-Verlag New York) · Zbl 0922.58046
[7] Forte, B.; Vrscay, E. R., Inverse problem methods for generalized fractal transforms, (Fisher, Y., Fractal Image Encoding and Analysis. Fractal Image Encoding and Analysis, NATO Adv. Study Inst. Ser. F, vol. 159 (1998), Springer-Verlag: Springer-Verlag New York) · Zbl 0829.28005
[8] Kisielewicz, M., Differential Inclusions and Optimal Control, Math. Appl. (1991), Kluwer · Zbl 0731.49001
[9] Kunze, H.; La Torre, D.; Vrscay, E., Contractive multifunctions, fixed point inclusions and iterated multifunction systems, J. Math. Anal. Appl., 330, 159-173 (2007) · Zbl 1115.47043
[10] Hutchinson, J., Fractals and self-similarity, Indiana Univ. Math. J., 30, 713-747 (1981) · Zbl 0598.28011
[11] J. Hutchinson, D. La Torre, F. Mendivil, IFS Markov operators on multimeasures, 2007, preprint; J. Hutchinson, D. La Torre, F. Mendivil, IFS Markov operators on multimeasures, 2007, preprint
[12] McClure, D. E.; Vitale, R., Polygonal approximation of plane convex sets, J. Math. Anal. Appl., 51, 103-125 (1975)
[13] D. La Torre, F. Mendivil, Approximation and stability of multifunctions, preprint; D. La Torre, F. Mendivil, Approximation and stability of multifunctions, preprint · Zbl 1165.28008
[14] La Torre, D.; Mendivil, F.; Vrscay, E. R., Iterated function systems on multifunctions, (Aletti, G.; Burger, M.; Micheletti, A.; Morale, D., Math Everywhere: Deterministic and Stochastic Modeling in Biology, Economics and Industry (2007), Springer) · Zbl 1165.28008
[15] Mendivil, F.; Vrscay, E. R., Fractal vector measures and vector calculus on planar fractal domains, Chaos Solitons Fractals, 14, 1239-1254 (2002) · Zbl 1036.28008
[16] Radstrom, H., An embedding theorem for spaces of convex sets, Proc. Amer. Math. Soc., 3, 1, 165-169 (1952) · Zbl 0046.33304
[17] Rockafellar, R. T.; Wets, R. J.-B., Variational Analysis (1998), Springer-Verlag: Springer-Verlag New York · Zbl 0888.49001
[18] Vitale, R., \(L_p\) metrics for compact, convex sets, J. Approx. Theory, 45, 3, 280-287 (1985) · Zbl 0595.52005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.