×

Extinction in nonautonomous Lotka-Volterra competitive system with pure-delays and feedback controls. (English) Zbl 1163.45301

Summary: In this paper, the extinction of species for general \(n\)-species nonautonomous Lotka-Volterra competitive system with pure-delays and feedback controls is studied. New sufficient conditions of which a part of the \(n\) species is driven to extinction are established by using the method of multiple Lyapunov functionals and by developing a new analysis technique. The numerical simulation shows that in a competitive system by introducing proper feedback controls we can make an extinct species become permanent.

MSC:

45D05 Volterra integral equations
Full Text: DOI

References:

[1] Abdurahman, X.; Teng, Z., Persistence and extinction for nonautonomous n-species Lotka-Volterra cooperative systems with delays, Stud. Appl. Math., 118, 17-43 (2007) · Zbl 1533.34058
[2] Ahmad, S., Extinction of species in nonautonomous Lotka-Volterra systems, Proc. Amer. Math. Soc., 127, 2905-2910 (1999) · Zbl 0924.34040
[3] Ahmad, S.; Lazer, A. C., Necessary and sufficient average growth in a Lotka-Volterra system, Nonlinear Anal., 34, 191-228 (1998) · Zbl 0934.34037
[4] Ahmad, S.; Lazer, A. C., Average growth and extinction in a competitive Lotka-Volterra system, Nonlinear Anal., 62, 545-557 (2005) · Zbl 1088.34047
[5] Ahmad, S.; Montes de Oca, F., Extinction in nonautonomous T-periodic competitive Lotka-Volterra system, Appl. Math. Comput., 90, 155-166 (1998) · Zbl 0906.92024
[6] Ahmad, S.; Stamova, I. M., Almost necessary and sufficient conditions for survival of species, Nonlinear Anal. RWA, 5, 219-229 (2004) · Zbl 1080.34035
[7] Ahmad, S.; Stamova, I. M., Partial persistence and extinction in N-dimensional competitive systems, Nonlinear Anal., 60, 821-836 (2005) · Zbl 1071.34046
[8] Ahmad, S.; Stamova, I., Survival and extinction in competitive systems, Nonlinear Anal. RWA, 9, 708-717 (2008) · Zbl 1144.34343
[9] Campos, J.; Ortega, R.; Tineo, A., Homeomorphisms of the disk with trivial dynamics and extinction of competitive systems, J. Differential Equations, 138, 157-170 (1997) · Zbl 0886.34025
[10] Chen, F., The permanence and global attractivity of Lotka-Volterra competition system with feedback controls, Nonlinear Anal. RWA, 7, 133-143 (2006) · Zbl 1103.34038
[11] Chen, F., On the periodic solution of periodic multi-species Kolmogorov type competitive system with delays and feedback controls, Appl. Math. Comput., 180, 366-373 (2006) · Zbl 1113.34050
[12] Chen, F., Global stability of a single species model with feedback control and distributed time delay, Appl. Math. Comput., 178, 474-479 (2006) · Zbl 1101.92035
[13] Chen, F., Permamence in nonautonomous multi-species predator-prey system with feedback controls, Appl. Math. Comput., 173, 694-709 (2006) · Zbl 1087.92059
[14] Chen, F., Global asymptotic stability in \(n\)-species nonautonomous Lotka-Volterra competitive systems with infinite delays and feedback control, Appl. Math. Comput., 170, 1452-1468 (2005) · Zbl 1081.92038
[15] Chen, F.; Li, Z.; Huang, Y., Note on the permamence of a competitive system with infinite delay and feedback controls, Nonlinear Anal. RWA, 8, 680-687 (2007) · Zbl 1152.34366
[16] Chen, X., Almost periodic solutions of nonlinear delay population equation with feedback control, Nonlinear Anal. RWA, 8, 62-72 (2007) · Zbl 1120.34054
[17] Chen, X.; Chen, F., Almost periodic solutions of a delay population equation with feedback control, Nonlinear Anal. RWA, 7, 559-571 (2006) · Zbl 1128.34045
[18] Fan, M.; Wong, P. J.Y.; Agarwal, R. P., Periodicity and stability in periodic \(n\)-species Lotka-Volterra competition system with feedback controls and deviating arguments, Acta Math. Sinica, 19, 801-822 (2003) · Zbl 1047.34080
[19] Gopalsamy, K., Stability and Oscillations in Delay Differential Equations of Population Dynamics (1992), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht, Boston, London · Zbl 0752.34039
[20] Gopalsamy, K.; Weng, P., Global attractivity in a competition system with feedback controls, Comput. Math. Applic., 45, 665-676 (2003) · Zbl 1059.93111
[21] Hale, J. K., Theory of Functional Differential Equations (1977), Springer: Springer Heidelberg · Zbl 0352.34001
[22] Hu, H.; Teng, Z.; Jiang, H., On the permanence in non-autonomous Lotka-Volterra competitive system with pur-delays and feedback controls, Nonlinear Anal. RWA (2008)
[23] Huo, H.; Li, W., Positive periodic solutions of a class of delay differential system with feedback control, Appl. Math. Comput., 148, 35-46 (2004) · Zbl 1057.34093
[24] Kuang, Y., Delay Differential Equations with Applications in Population Dynamics (1993), Academic Press: Academic Press Boston · Zbl 0777.34002
[25] Li, Z.; Chen, F., Extinction in two dimensional nonautonomous Lotka-Volterra systems with the effect of toxic substances, Appl. Math. Comput., 182, 684-690 (2006) · Zbl 1113.92065
[26] Li, Y.; Liu, P.; Zhu, L., Positive periodic solutions of a class of functional differential systems with feedback controls, Nonlinear Anal., 57, 655-666 (2004) · Zbl 1064.34049
[27] Li, W.; Wang, L., Existence and global attractivity of positive periodic solutions of functional differential equations with feedback control, J. Comput. Appl. Math., 180, 293-309 (2005) · Zbl 1069.34100
[28] Li, Y.; Zhu, L., Positive periodic solutions for a class of higher-dimensional state-dependent delay functional differential equations with feedback controls, Appl. Math. Comput., 159, 783-795 (2004) · Zbl 1161.34346
[29] Liao, L., Feedback regulation of a logistic growth with varuable coefficients, J. Math. Anal. Appl., 259, 489-500 (2001) · Zbl 1003.34069
[30] Liu, S.; Chen, L., Permanence, extinction and balancing survival in nonautonomous Lotka-Volterra system with delays, Appl. Math. Comput., 129, 481-499 (2002) · Zbl 1035.34088
[31] Montes de Oca, F.; Zeeman, M. L., Extinction in nonautonomous competitive Lotka-Volterra systems, Proc. Amer. Math. Soc., 124, 3677-3687 (1996) · Zbl 0866.34029
[32] Montes de Oca, F.; Vivas, M., Extinction in a two dimensional Lotka-Volterra system with infinite delay, Nonlinear Anal. RWA, 7, 1042-1047 (2006) · Zbl 1122.34058
[33] Teng, Z., On the nonautonomous Lotka-Volterra N-species competing systems, Appl. Math. Comput., 114, 175-185 (2000) · Zbl 1016.92045
[34] Teng, Z.; Abdurahman, X., On the extinction for nonautonomous food chain systems with delays, Nonlinear Anal. RWA, 7, 167-186 (2006) · Zbl 1089.92062
[35] Teng, Z.; Chen, L., Permanence and extinction of periodic predator-prey systems in a patchy environment with delay, Nonlinear Anal. RWA, 4, 335-364 (2003) · Zbl 1018.92033
[36] Teng, Z.; Li, Z.; Jiang, H., Permamence criteria in nonautonomous predator-prey Kolmogorov systems and its applications, Dyn. Syst., 19, 171-194 (2004) · Zbl 1066.34048
[37] Tineo, A., Necessary and sufficient conditions for extinction of one species, Adv. Nonlinear Stud., 5, 57-71 (2005) · Zbl 1091.34028
[38] Tineo, A., Asymptotic behavior of an invading species, Nonlinear Anal. RWA, 9, 1-8 (2008) · Zbl 1202.34089
[39] Weng, P., Existence and global stability of positive periodic solution of periodic integro-differential systems with feedback controls, Comput. Math. Appl., 40, 747-759 (2000) · Zbl 0962.45003
[40] Xia, Y.; Cao, J.; Zhang, H.; Chen, F., Almost periodic solutions of \(n\)-species competitive system with feedback controls, J. Math. Anal. Appl., 294, 503-522 (2004) · Zbl 1053.34040
[41] Yin, F.; Li, Y., Positive periodic solutions of a single species model with feedback regulation and distributed time delay, Appl. Math. Comput., 153, 475-484 (2004) · Zbl 1087.34051
[42] Zhang, H.; Chen, L.; Zhu, R., Permanence and extinction of a periodic predator-prey delay system with functional response and stage structure for prey, Appl. Math. Comput., 184, 931-944 (2007) · Zbl 1109.92061
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.